

NEER ENGI

PROCEEDINGS OF THE 9TH
OVERTURE WORKSHOP

Electrical and Computer Engineering
Technical Report ECE-TR-2

DATA SHEET

Title: PROCEEDINGS OF THE 9TH OVERTURE WORKSHOP
Subtitle: Electrical and Computer Engineering
Series title and no.: Technical report ECE-TR-2

Authors: Sune Wolff & John Fitzgerald
Department of Engineering – Electrical and Computer Engineering,
Aarhus University

Internet version: The report is available in electronic format (pdf) at
the Department of Engineering website http://www.eng.au.dk.

Publisher: Aarhus University©
URL: http://www.eng.au.dk

Year of publication: 2012 Pages: 125
Editing completed: June 2011

Abstract: This report contains the proceedings of The 9th
Overture Workshop, held in Limerick on 20th June 2011.

Keywords: Overture, Workshop, 2011

Please cite as: Sune Wolff & John Fitzgerald, Proceedings of the 9th
Overture Workshop 2012. Department of Engineering, Aarhus
University. Denmark.125 pp. - Technical report ECE-TR-2

Front image: Logo, Overture Open Source Community

ISSN: 2245-2087

Reproduction permitted provided the source is explicitly acknowledged

PROCEEDINGS OF THE
9TH OVERTURE
WORKSHOP

Sune Wolff — Aarhus University, Department of Engineering

John Fitzgerald — Newcastle University

Abstract

This report contains the proceedings of the 9th Overture Workshop, held in
Limerick on 20th June 2011.

Table of Contents

Abstract i

Introduction 1

List of Participants 3

Run-Time Validation of Timing Constraints for VDM-RTMod-
els 4

Automated Exploration of Alternative System Architectures
with VDM-RT 17

Facilitating Consistency Check between Specification and Im-
plementation with MapReduce Framework 32

Counterpoint: Towards a Proof-Support Tool for VDM 41

VDM++ as a Basis of Scalable Agile Formal Software Devel-
opment 50

Towards Customizable and Bi-directionally Traceable Trans-
formation between VDM++ and Java 59

Utilizing VDM Models in Process Management Tool Develop-
ment: an Industrial Case 72

Formal Modelling and Safety Analysis of an Embedded Control
System for Construction Equipment: an Industrial
Case Study using VDM 84

Request for Modification of periodic thread definitions and
duration and cycles statements 120

ii

Introduction

Overture (www.overturetool.org) is by now a well established open-source
community initiative that has developed a range of modern tools to support
the construction and analysis of models expressed in the VDM (Vienna Devel-
opment Method) family of notations. Similarly, the community’s workshops
have become a fixture since the first such event was held in 2005.

This volume represents the proceedings of the ninth Overture Workshop,
held at LERO, Limerick, Ireland on 20 June 2011, as part of the FM 2011
symposium. As with all the Overture workshops, its purpose was to foster an
active community of researchers and practitioners working with VDM in both
academia and industry. The organizers were:

• Sune Wolff of Aarhus University in Denmark, and

• John Fitzgerald of Newcastle University, UK.

Members of the Programme Committee were:

• Nick Battle, UK;

• Dines Bjørner, Denmark;

• Cliff Jones, UK;

• Peter Gorm Larsen, Denmark;

• Ken Pierce, UK;

• Nico Plat, Netherlands; and

• Shin Sahara, Japan.

For the ninth workshop, we were delighted to welcome contributions from
Augusto Ribeiro, Kenneth Lausdahl and Peter Gorm Larsen on the real-time
extensions VDM-RT, addressing issues that, along with those raised in Ken
Pierce’s contribution on threads, have been highlighted by the ongoing work on
co-modelling and co-simulation for embedded systems design in the DESTECS

1

Table of Contents

project (www.destecs.org). Also in the control systems domain was a thor-
ough and systematic analysis of the safety analysis of power transmission in
construction equipment by Takayuki Mori from Komatsu in Japan.

Papers by Shigeru Kusakabe, Yoichi Omori and Keijiro Araki, and by
Hiroshi Mochio and Fuyuki Ishikawa, provided a more methodological strand
to the workshop, while Claus Ballegaard Nielsen’s paper on VDM’s application
in analysing a process management tool provided a further application story.

Ken Pierce’s paper on proof construction looked to a long-running area
for tools development, coupled closely to deep semantic issues, complemented
by a presentation from Anne Haxthausen (not in these proceedings), on the
Semantics of a VDM Core Language in COQ.

The papers and presentations are available on-line on the Overture project
web-site (http://www.overturetool.org), which also includes online proceed-
ings of the previous Overture workshops. We hope that this volume shows the
continuing variety of research and application in the community surrounding
this formal method.

October 2011 Sune Wolff
John Fitzgerald

2

List of Participants

Nick Battle Fujitsu UK

John Fitzgerald Newcastle University

Anne Haxthausen Technical University of Denmark

Fuyuki Ishikawa National Institute of Informatics

Shigeru Kusakabe Kyushu University

Peter Gorm Larsen Aarhus School of Engineering

Kenneth Lausdahl Aarhus School of Engineering

Hiroshi Mochio Chikushi Jogakuen University

Takayuki Mori Newcastle University

Claus Nielsen Aarhus School of Engineering

Nico Plat West Consulting B.V.

Ken Pierce Newcastle University

Augusto Ribeiro Aarhus School of Engineering

Shin Sahara CSK Corporation

Marcel Verhoef CHESS Embedded Technology B.V.

Sune Wolff Aarhus School of Engineering

Jim Woodcock University of York

3

Run-Time Validation of Timing Constraints for
VDM-RT Models

Augusto Ribeiro, Kenneth Lausdahl, and Peter Gorm Larsen

Aarhus School of Engineering, Dalgas Avenue 2, DK-8000 Aarhus C, Denmark,
{ari,kel,pgl}@iha.dk

Abstract. Development of distributed real-time embedded systems is often a
challenging task and validation of the timing behaviour of such systems is typ-
ically as important as its functional correctness. VDM-RT is a modelling lan-
guage with an executable subset that can be used to describe distributed real-
time embedded systems. In previous work [5], post-analysis of important timing
constraints was achieved by inspecting a log file that results from simulating a
VDM-RT model using VDMTools. In this paper we present how validation of
such timing constraints actually can be efficiently carried out during run-time
using the interpreter from the open source Overture/VDM tool suite.

Keywords: VDM-RT; real-time distributed embedded systems; timing proper-
ties validation

1 Introduction

Development of distributed real-time embedded systems is often a challenging task.
Typically, real-time embedded systems have timing constrains that should be respected
for the system to be considered useful. These timing constrains are obvious for a hard
real-time system where the failure to respond within a certain time interval can lead
to total system failure but even soft real-time systems can have time constrains. For
example, when a user presses the TV remote control to change channel, he expects the
channel on the TV to change in an acceptable amount of time.

Using modelling tools to gain better understanding of a system is seen as a good
practice [3]. By using simulation, one can gain confidence that a model is doing what
it is expected. By being able to define time constrains and validate these constrains in a
model during simulation, one could gain even more confidence.

VDM-RT is a modelling language that permits the specification of distributed real-
time systems which has an executable subset. In this article, we present a tool enhance-
ment for the VDM-RT interpreter [10] that extends the work presented in [5] and adds
the capability of defining timing constrains to a model and validate them during inter-
pretation.

This paper starts off with a short presentation of the relevant aspects in Section 2.
Afterwards Section 3 introduces a small case study for an in-car navigation and radio
system and illustrates how the existing tools can be used to provide a graphical overview
of the interpretation of such an example distributed over multiple CPUs. Then Section 4
introduces the notion of system-wide timing invariants suggested by this article. This

is followed by Section 5 illustrating how such timing invariants can be used concretely
in VDM-RT and how the tool support can be updated with visualisation of violation of
such timing invariants. Finally Section 6 provides a few concluding remarks about the
work presented in this article.

2 VDM-RT

The Vienna Development Method (VDM) [2, 8, 6] was originally developed at the IBM
laboratories in Vienna in the 1970s and as such it is one of the longest established formal
methods. VDM comes in three different flavours: VDM-SL [12] (VDM Specification
Language) an ISO Standard; VDM++ [7] an object oriented extension of VDM-SL that
supports concurrency; and more recently VDM-RT [14, 13], an extension to VDM++
to model distributed real-time embedded systems. VDM-RT is supported by Overture
Tool [9] and VDMTools [4]. Both tools includes an interpreter capable of running the
executable part of VDM-RT but the work described in this article is only built into
Overture.

VDM-RT includes the notion of a quantifiable time; there is a system clock which
is running from beginning till the end of interpretation. Currently, the maximum preces-
sion allowed in the interpreter is 1 nanosecond. It also contains the notion of processing
units; the built-in CPU class can be used to declare processing unit and its speed (in Hz);
different parts of the model are deployed to specified CPUs. CPUs can communicate
between themselves through buses. VDM-RT constructs take time to be interpreted, this
time is shorter or longer according to the CPU speed. Using the keywords cycles and
duration it is possible to influence how much time a construct takes to execute. Us-
ing cycles one can say how many CPU cycles an instruction will take to complete;
using this keyword will make the speed to complete an instruction inversely propor-
tional to the speed of the CPU. On the other hand, the keyword duration turns the
completion time of an instruction to a constant value; this can be useful to model, for
example, a IO access where it takes a constant time independent of the speed of the
CPU accessing it. There is also a special kind of CPU, which is present in all the VDM-
RT models implicitly, the virtual CPU (vCPU) which per default is infinitely fast and its
execution does not affect system timing. When a VDM-RT model is interpreted, a log
is produced in which all events related with operations and function calls, object and
threads creation, activation and deactivation that happened during the interpretation are
registered. This log can be visualized graphically like shown in Figure 2.

A special kind of predicates called permission predicates, can act as a guard to op-
erations and can be used to ensure synchronization of concurrent threads. Within these
predicates it is possible to use operation history guards. History guards denote the num-
ber of requests, activations and completions of the operations. For each of these possible
operation states, an event is generated in the log. The VDM-RT syntax to express these
events is #req for request, #act for activate and #fin for finish. The request event
indicates that the interpreter wishes to call the operation. The activate event indicates
that the requested method was actually activated, this distinction is made because there
might exist a delay between request and activation either due to a synchronization con-
dition in the operation or because the CPU executing the thread might not have enough

5

processing power. The finish event indicates that the operation has completed. The rel-
ative timing of these events are important in case timing requirements for the system
being modelled are needed.

3 Case study

In this section, we introduce a VDM-RT model and the associated existing tool support.
The idea behind the model is to describe an in-car navigation radio and check if it is
possible to validate its timing requirements. An overview of the system is presented in
Figure 1. The environment has three types of interaction with the system, it is possible

Fig. 1. Overview of the In-car Radio Navigation System

for the system to receive new TMC broadcasts (Traffic Message Channel) and adjust the
volume (the volume down interaction is not presented in Figure 1 because it is similar
to adjusting the volume up). The system is divided into three major components, the
man-machine interface (MMI) in CPU1, the radio in CPU2 and the navigation system
in CPU3. All these CPUs are connected through a common bus (BUS1). Finally all
the CPUs have a connection through the vBUS to the vCPU where the environment is
present. Listing 1.1 shows how the Radio class is modelled in VDM-RT.�
class Radio

values
public MAX : nat = 10;

instance variables
public volume : nat := 0;

6

operations
async public AdjustVolumeUp : () ==> ()
AdjustVolumeUp () ==
(cycles (1E6) skip;

if volume < MAX
then (volume := volume + 1;

RadNavSys‘mmi.UpdateScreen(1)));

async public HandleTMC: () ==> ()
HandleTMC () ==

(cycles (1E6) skip;
RadNavSys‘navigation.DecodeTMC());

end Radio
� �
Listing 1.1. Snippet of the Radio class

It has 3 operations (AdjustVolumeDown is not presented), the ones to adjust volume
and one that handles the incoming TMC signal. The operations illustrate the use of the
keyword cycles, in this case it means that 106 cycles (1E6) are used in the computation
of the operation. The rest is on purpose kept very simple, the AdjustVolume oper-
ations change the volume if they did not reach the limit and notifies the screen to do
an update. The HandleTMC, relays the decoding of the TMC signal to the navigation
unit.

Currently, the tool support available is capable of producing a detailed log of the
execution of a VDM-RT model. There is also a tool, the RTLogViewer that allows
graphical visualization of such logs. Figure 2 shows RTLogViewer at work. The log

Fig. 2. Log showing one of the executions of the model

7

contains details such as when certain parts of the model were active and which calls
were made at a certain time. Note that the time unit used on the log is nanoseconds (ns)
as opposed to the time unit used throughout the rest of this article which is milliseconds
(ms).

A number of system-wide timing invariants need to be added to the in-car navigation
system in order to provide a good user interface experience.

C1: A volume change must be reflected in the display within 35 ms.
C2: The screen should be updated no more than once every 500 ms.
C3: If the volume is to be adjusted upwards and it is not currently at the maximum, the

audible change should occur within 100 ms.

It can be argued that C1 and C2 are clashing since we demand the screen to update
within 35ms after a key press (in C1) and that the screen only updates each 500ms (in
C2) but this was chosen on purpose for testing reasons.

4 Timing Invariants

Timing invariants are logical statements that allow a modeller to formulate system-
wide timing properties, these properties indicate a relation between two events. These
properties have the form of a predicate over events and operate in a three value logic
(true, false and unknown). Because these properties are to be verified in a VDM-RT
environment we can use in their definition the notion of time. Informally, a property
consists of a 6-tuple containing at least the following1:

A name: the property name (P);
A relation: a relation between the two events and a time interval (@);
A trigger: an event that triggers the validation of a conjecture (et);
An ending: when the ending event happens, the conjecture can be checked for satisfi-

ability (ee);
A time interval: the time interval used in the property (i);
A default evaluation: the default evaluation (true or false) to be returned if the ending

event never occurs (d).

We attempt to formally define a property P. To assist us in this task we need the function
time (t) that returns an event time of occurrence.

t(e) =

{
time if e occured
∅ if e did not occur

Where time is the systems time of the occurrence of event e. If both events (trigger and
ending) occurred then t(ee) ≥ t(et). The current system time is denoted by curr. As
expected, it is only possible to evaluate if a property holds if the trigger event et occurs
but it might be possible to evaluate it before the ending event ee occurs or even if it does
not occur at all.

1 We say at least because extended versions of the property will appear.

8

P(@, ee, et, i, d) ≡
{
t(ee)− t(et) @ i if t(ee) 6= ∅ ∧ t(et) 6= ∅
d if t(ee) = ∅ ∧ curr− t(et) > i

(1)

Where the kind of the property in question determines which relation is (@) and the de-
fault evaluation (d). Because simulation is time framed, it can happen that it terminates
before a property can be properly evaluated (the case where t(ee) = ∅∧curr− t(et) ≤
i), when this happens the property evaluation is deemed inconclusive.

Now that we have the generic property formally defined, we can by specifying P, @
and d in definition 1 derive at least three interesting properties.

1. Deadline Met: A deadline by definition is a time by which something must be
finished. In real-time embedded systems there is typically deadlines that must be
respected from when an event happens to its response. In our terminology, it means
that the ending event must happen within a certain timeframe from the trigger event.
We instantiate 2 and fixate P, @ and d for the deadlineMet property in the following
way:

deadline(≤, e1, e2, i, false) (2)

Just for better comprehension, the expanded version of definition 2 is presented
below:

deadline(e1, e2, i) ≡
{
t(ee)− t(et) ≤ i if t(ee) 6= ∅ ∧ t(et) 6= ∅
false if t(ee) = ∅ ∧ curr− t(et) > i

(3)
2. Separate: Intuitively, separation properties describe a minimum separation be-

tween events if the second event occur at all and it can be defined through spec-
ifying 1 in the following way:

separate(>, e1, e2, i, true) (4)

3. Separate Required: Intuitively, required separations are separations in which the
second event is required to occur after the minimum separation. Again we define it
by specifying 1:

separateReq(>, e1, e2, i, false) (5)

There is only a subtle difference between definitions 4 and 5. The default evaluation
ensures the desired result when evaluating the separation properties.
A peculiar case happens when the ending event does not occur while interpreting a
model. Since a model is simulated within a time range (tn), the ending event could
potentially happen some time in the future after the simulation has stopped. In this
case, the property would evaluate to inconclusive if tn − t(et) ≤ i or to the default
evaluation (false) otherwise. This case requires attention by the modeller because
it is not possible to tell if the ending event would happen in the future and change
the evaluation of the property.

9

4.1 Events

The basic concept of properties have been described and it was mentioned that proper-
ties are predicates over events but no definition of event has been provided yet. In this
section we will provide a formalization of the notion of events as used in the timing
invariants. Events are defined as predicates over certain occurrences that happen in the
model during the interpretation. Events can be divided into two types:

Operation events: the VDM-RT semantics defines three identifiable states of an oper-
ation: request, when an operation is registered to be invoked; activation, when an
operation is really invoked (the time of request and activation can be different for
several reasons); and finally finished, when an operation call is completed.
An operation event is an event tied to one of these operation states either at class
or object level2. So basically when an event is associated with an operation state
and a class, this event is registered whenever any object of this class invoking the
operation enters that state. On the other hand, an event associated with an object is
only registered when the specific object enters that state. Assuming that opStateSet
is a set that contains tuples of the form (object, op, state) which is populated with
the operations that are in a certain state in an object for the current system time
(curr). We formalize the object level event as:

objOpEvent(object, op, state) ≡ (object, op, state) ∈ opStateSet (6)

The class level event can be formalized with the help of definition 6 as:

classOpEvent(class, op, state) ≡
∃(obj, op, state) ∈ (opStateSet).obj ∈ class ∧ objOpEvent(obj, op, state)

(7)

Predicate events: this kind of events is associated with a predicate, the event occurs
when the predicate is true. These predicates must have as argument at least one
instance variable that is accessible from the system class, i.e. any variable that is
accessible after initialization of the system. Assuming a predicate p with n argu-
ments we formalize predicate events as:

predEvent(p, a1, . . . , an) ≡ p(a1, . . . , an) (8)

At least one instance variable has to be used as argument because predicate events
are only evaluated in case of a variable state change. The reason for this is that
evaluated all predicate events at all times could be computationally expensive. By
tying a predicate with a variable state change, the number of times the predicate is
evaluated is possibly highly reduced.

Timing invariants contain two events, a trigger and an ending, as shown in Section 4.
Each trigger and ending event can be formed by a combination of operation and predi-
cate event. Here follows the definition of a timing invariant event (trigger or ending):

timInvEvent(opEv, predEv) ≡

opEv if predEv is not defined
predEv if opEv is not defined
opEv ∧ predEv otherwise

(9)

2 For practical reasons we limit the object level to instance variables present in the system class

10

If both events are defined, the opEv takes precedence over the predEv since it only
makes sense to calculate the later if the first one evaluates to true.

4.2 Invariant Instances

A timing invariant typically needs to be validated more than once for each simula-
tion, for each time the trigger event occurs. These are denominated invariant instances
because they are instances of the same invariant triggered in different situations. The
lifetime of a single instance of an invariant is described below:

1. Before the trigger event occurs, the instance does not exist;
2. If at a certain point in time, the trigger event happens, an instance of the invariant

is created in which the time of the trigger event is registered. We denominate these
instances active;

3. If the ending event occurs, the time of its occurrence will be registered in all3 the
instances of the invariant. The instances are marked as ended and its evaluation can
be made. We denominate these instances decommissioned. This decommissioning
policy is called non-selective;

4. If an instance does not hold it remains saved for later display.

Invariant instances represent fully specified versions of the timing invariants presented
in definition 1 where all the free variables have been fixed. An arbitrary number of
instances of an invariant can exist at a certain point in time during simulation.

Assuming timInv is the set of defined timing invariants, actInst is the set of active
instances, decoInst the set of decommissioned instances we can define the transition of
states at a given time. Definition 10 describes how invariant instances are created from
invariant definitions. The function isTrigger checks if the trigger event of an invariant
is occurring. The function createInst creates an invariant instance from a definition and
registers it in the current time.

∀inv ∈ timInv.isTrigger(timInv) =⇒ createInst(timInv) ∪ actInst (10)

Definition 11 describes how an instance passes from active to the decommissioned state.
Function isEnding is analogous to isTrigger but for the ending event.

∀inv ∈ timInv, inst ∈ instances(inv, actInv).isEnding(timInv) =⇒
actInst \ inst ∧ (¬isSatisfied(inst) =⇒ inst ∪ decoInst) (11)

The function isSatisfied checks if an instance of the invariant holds or not. By following
this strategy, in the end of an interpretation we will end up with the invariant instances
that did not hold in the set decoInst.

The matching policy The non-selective decommissioning policy of invariant instances
might not be the proper solution for all cases. With this policy it is not possible to
describe that an ending event can only decommission one instance. Assuming that et

3 Further in this section another way of decommissioning the instances is described.

11

and ee are trigger and ending events respectively, for a certain invariant P. Considering
the following string of events:

et, et, ee (12)

With the policy described before, the following would happen: two instances of the
invariant P would be created, one for each et then both instances would be decommis-
sioned by the only ee. One can think of another policy that instead of keeping a set
of active instances, keeps a sequence. In this mode, we demand that the trigger and
ending events happen in couples for the invariants to be decommissioned. This kind
of decommissioning uses a matching policy. By doing this, if the string of events pre-
sented in definition 12 ocurrs, one instance of the invariant will still be active. Both
policies are possible to be implemented and we decided to delegate the policy selection
by extending with one more argument to the timing invariant presented in definition 1.

P(@, ee, et, i, d,m) (13)

The boolean argument m means match and decides if the decommissioning of instances
is made according to the matching policy.

Other policies In Section 4.1, operation events over classes were discussed. Defining
a class operation event can lead to the situation where an invariant is triggered by one
object of that class and ended by another object of the same class. In certain situations
this might not be exactly what the modeller is looking for. Hence one more possible
policy of decommissioning of instances is a policy that demands that the trigger and the
ending event occur on the same object. Another restriction that might appear natural is
to demand that the trigger and ending event occur in the same thread. The choice of the
policies is model specific or even invariant specific, it depends on what is the modeller
looking for in each individual case.

One more possible extension to definition 13 is to add extra fields to enable more
policies. The definition extension will not be made here since these are presented here
merely for completion and discussion sake. All the mentioned policies in this paper
are possible to implement and they have been present in the development phase of the
prototype. The final decommissioning policy chosen for the prototype was the matching
policy simply because it was the most appropriate fit for the example we chose.

5 Run-Time Invariant Checking

A part of what was described in Section 4 was implemented as a prototype as part of
this work. The prototype has been built on top of the open-source VDM-RT interpreter
VDMJ [1]. As the validation is made during run-time, an option could be added to the
interpreter to stop the execution when an invariant is violated. The prototype merely
logs the violations which then can be analysed post to simulation completion.

We defined the concrete syntax for the timing invariants in VDM-RT as:�
property(trigger,ending,interval);
� �

12

This syntax is open to discussion and it might need to be extended if the policies need
to be expressed in it. The time interval has also some novelty that is noteworthy, it is
now possible to specify the time unit used in the interval (s,ms,ns). The concrete syntax
of the time interval definition is the following:�
interval = nat1 ("s" | "ms" | "ns")
� �
This notation is used in the examples that appear in the next subsection.

5.1 Concrete Invariants

The invariants first mentioned in Section 3 can now be expressed in the defined syntax.

C1: A volume change must be reflected in the display within 35 ms.�
deadlineMet(

#fin(Radio‘AdjustVolumeUp),
#fin(MMI‘UpdateScreen),
35 ms)
� �

C2: The screen should be updated no more than once every 500 ms.�
separate(

#fin(MMI‘UpdateScreen),
#fin(MMI‘UpdateScreen),
500 ms)
� �

C3: If the volume is to be adjusted upwards and it is not currently at the maximum, the
audible change should occur within 100 ms.�
deadlineMet(

(#req(MMI‘HandleKeyPressUp),
RadNavSys‘radio.volume < Radio‘MAX

),
#fin(MMI‘AdjustVolumeUp),
100 ms)
� �

The definitions are pretty self-explanatory, #req and #fin refer to the operation states
request and finish respectively. The operation events are all defined over classes and one
instance variable event is defined in C3. C3 trigger is a composite of a operation and a
variable trigger.

13

5.2 System Class Extension

We recommend an extension to the system where the modeller could specify the system
timing properties. We recommend such extension because these properties could be
seen as a kind of system-wide timing invariants which must hold in order for the system
to behave correctly. The only difference from traditional VDM invariants is that the
violation of these would not cause the interpretation to stop but instead report a timing
invariant violation which could after be inspected by the modeller.�
system Sys
...
timing invariants

deadlineMet(evTrigger1, evEnder1, 400 ms);
...
separate(evTrigger2, evEnder2, 1000 ms);

end Sys
� �
With the facilities provided by [11], it is possible to easily test the system in dif-

ferent architectures. By coupling this idea with the recorded time invariants in the sys-
tem class, it is possible to easily spot which architectures respect the time behavior
specification and discard the ones which do not.

5.3 Results

Figure 3 shows the resulting log of an interpretation of the model with the timing in-
variants. We can see that both C1 and C3 hold through the interpretation while C2 is
violated twice. The log shows which invariants were violated or not and for the ones
that were violated, it indicates at which point of time it happened and the responsible
thread. In the graphical log representation, the places of the violation of C2 are also
marked with a circle in red. Having such information readily available and facilities to
go to critical points avoids a painstakingly examination of the RTLogs by the modeler,
greatly enhancing his ability to reason about the model.

The results of invariants test might not be as simple as only Pass or Not Pass, like
mentioned in Section 4 results might be Inconclusive or the invariant might not even be
activated once because the trigger event has not occured at all in the chosen scenario,
leading to a Not Activated result.

6 Concluding Remarks

In this paper we have presented an extension of the VDM-RT notation and the asso-
ciated interpreter to make validation of system timing properties during run-time that
builds up on the theory presented in [5]. The intention of this paper is to both demon-
strate that such validation is possible to do at run-time and also to form basis for dis-
cussion on the inclusion of timing invariants in the VDM-RT language as a form of

14

Fig. 3. Timing invariants violations represented in the logger

recording system-wide invariants related with timing which are usually very important
when specifying a real-time system. The discussion could also be extended to which
kind of the properties should be available for specifying these timing invariants or if
their semantics needs to be adjusted. Finally we hope that the workshop can clarify
whether it would be worthwhile for the user to be able to select whether violations of
timing constraints should be logged or treated as run-time errors.

Acknowledgements

This work was partly supported by the EU FP7 DESTECS Project. We appreciate the
input we have had from the different partners on this work. In addition we would like
to thank Nick Battle and the anonymous referees for valuable input on this paper.

References

1. Battle, N.: VDMJ User Guide. Tech. rep., Fujitsu Services Ltd., UK (2009)
2. Bjørner, D.: The Vienna Development Method: Software Abstraction and Program Synthe-

sis, Lecture Notes in Computer Science, vol. 75: Math. Studies of Information Processing.
Springer-Verlag (1979)

3. Fitzgerald, J.S., Larsen, P.G.: Balancing Insight and Effort: the Industrial Uptake of Formal
Methods. In: Jones, C.B., Liu, Z., Woodcock, J. (eds.) Formal Methods and Hybrid Real-
Time Systems, Essays in Honour of Dines Bjørner and Chaochen Zhou on the Occasion of
Their 70th Birthdays. pp. 237–254. Springer, Lecture Notes in Computer Science, Volume
4700 (September 2007), iSBN 978-3-540-75220-2

15

4. Fitzgerald, J.S., Larsen, P.G.: Triumphs and Challenges for the Industrial Application of
Model-Oriented Formal Methods. In: Margaria, T., Philippou, A., Steffen, B. (eds.) Proc.
2nd Intl. Symp. on Leveraging Applications of Formal Methods, Verification and Valida-
tion (ISoLA 2007) (2007), also Technical Report CS-TR-999, School of Computing Science,
Newcastle University

5. Fitzgerald, J.S., Larsen, P.G., Tjell, S., Verhoef, M.: Validation Support for Real-Time Em-
bedded Systems in VDM++. In: Cukic, B., Dong, J. (eds.) Proc. HASE 2007: 10th IEEE
High Assurance Systems Engineering Symposium. pp. 331–340. IEEE (November 2007)

6. Fitzgerald, J.S., Larsen, P.G., Verhoef, M.: Vienna Development Method. Wiley Encyclope-
dia of Computer Science and Engineering (2008), edited by Benjamin Wah, John Wiley &
Sons, Inc

7. Fitzgerald, J., Larsen, P.G., Mukherjee, P., Plat, N., Verhoef, M.: Validated Designs for
Object–oriented Systems. Springer, New York (2005), http://www.vdmbook.com

8. Jones, C.B.: Systematic Software Development Using VDM. Prentice-Hall International,
Englewood Cliffs, New Jersey, second edn. (1990), iSBN 0-13-880733-7

9. Larsen, P.G., Battle, N., Ferreira, M., Fitzgerald, J., Lausdahl, K., Verhoef, M.: The Overture
Initiative – Integrating Tools for VDM. ACM Software Engineering Notes 35(1) (January
2010)

10. Lausdahl, K., Larsen, P.G., Battle, N.: A Deterministic Interpreter Simulating a Distributed
Real Time System using VDM. Submitted for publication (2011)

11. Lausdahl, K., Ribeiro, A.: Automated Exploration of Alternative System Architectures with
VDM-RT. In: 9th Overture Workshop, June 2011, Limerick, Ireland (2011)

12. P. G. Larsen and B. S. Hansen and H. Brunn N. Plat and H. Toetenel and D. J. Andrews and
J. Dawes and G. Parkin and others: Information technology – Programming languages, their
environments and system software interfaces – Vienna Development Method – Specification
Language – Part 1: Base language (December 1996)

13. Verhoef, M.: Modeling and Validating Distributed Embedded Real-Time Control Systems.
Ph.D. thesis, Radboud University Nijmegen (2008), ISBN 978-90-9023705-3

14. Verhoef, M., Larsen, P.G., Hooman, J.: Modeling and Validating Distributed Embedded Real-
Time Systems with VDM++. In: Misra, J., Nipkow, T., Sekerinski, E. (eds.) FM 2006: Formal
Methods. pp. 147–162. Lecture Notes in Computer Science 4085 (2006)

16

Automated Exploration of Alternative System
Architectures with VDM-RT

Kenneth Lausdahl and Augusto Ribeiro

Aarhus School of Engineering, Dalgas Avenue 2, DK-8000 Aarhus C, Denmark

Abstract. Choosing the optimal deployment of a distributed embedded applica-
tion onto alternative hardware configurations is often difficult and time consum-
ing. When developing a new product, a company must chose a hardware architec-
ture that ensures both that the system behaves correctly according to its functional
and timing specifications but also keeps its production cost at a minimum. The
investigation to find this tradeoff between cost and performance can be very ex-
pensive if carried out at implementation time. A company can save money and
development time if there is a possibility to quickly explore the design alterna-
tives before the start of the implementation. In this paper we describe a method
and associated tool support to assist in finding the best system design solution.

1 Introduction

As distributed real-time embedded systems become more and more prevalent around
us, new techniques must to be used to ensure lower costs of development while keeping
the service quality high. The quality of these kind of systems is normally not only
measured by functional correctness but also by timing behaviour correctness. Because
timing correctness is so essential when developing such systems, the implementation
cost can increase considerably if it is discovered at later stages of the development that
the selected hardware architecture cannot fulfil the timing parameters. Typical design
questions that cross an architect’s mind are [13]:

1. Does the proposed architecture meet the performance requirements of all applica-
tions?

2. How robust is the chosen architecture with respect to changes in the application or
architecture parameters?

3. Is it possible to replace components by cheaper, less powerful equivalents to save
cost while maintaining the required performance targets?

Models of software/hardware can be used to assist the system architect in answer-
ing these questions. They have previously been used to explore and validate different
deployment architectures even before the implementation cycle starts [14,12]. By do-
ing so, it is possible to gain knowledge, at an early stage, of the product that is being
developed, even before any deployment decisions have been made. Usually, companies
that wish to develop a distributed embedded system have certain target Printed Circuit
Boards (PCBs) in mind, which support a small limited range of CPUs. These PCBs es-
tablish the architecture of the hardware and by using models and simulation techniques,

one can gain insight into which PCB should be selected in order to fulfil the project re-
quirements. Furthermore, one can identify which kinds of CPUs and buses are needed
to respect the speed/capacity requirements of the application. Having a method and tool
support to test out all the interesting PCB/CPU/bus combinations and identify which
ones satisfy the system timing invariants, would give the system architect an advantage
when making such initial design choices.

The modelling language VDM-RT, enables a system architect to do these kinds
of different simulations, but the process of changing the system architecture and ap-
plication deployment is very cumbersome and lacks both flexibility and tool support.
Everything concerning deployment is tightly connected and mixed with the applica-
tion construction in the system1 class. This makes it difficult and impractical to explore
different architectures from a modeller’s point of view. When one wants to make such
changes, one must either overwrite the system class, and by doing so losing the pre-
vious system, or create a new project and copy all the files, except the system class, and
then create a new system class.

In this paper we show how deployment of VDM-RT models can be modified to
support exploration of different hardware configurations without changing the model
and how this can help a system architect to find the good designs. This can be seen as a
part of a larger effort in order to explore the different design alternatives of an embedded
distributed system in the style used in the DESTECS project [2]. We consider “the best
design” to be any solution that solves the proposed problem. It is then up to the architect
to decide which is the best one based on system invariants and additional cost analysis.

The remainder of this paper is set out as follows. In section 2 an introduction to
VDM and the VDM-RT dialect is presented. Section 3 illustrates how we separate the
model from its deployment without loosing expressiveness. In section 4, the typical de-
sign questions are addressed and solutions are presented to show how this work assists
the answering of these questions. Section 5 illustrates how this work can be used to ex-
plore an in-car-navigation system. Lastly, section 6 concludes this work with remarks
and suggestions for future improvements.

2 The VDM Real-Time Dialect

The Vienna Development Method (VDM) [1,8,4] was originally developed at the IBM
laboratories in Vienna in the 1970s and as such it is one of the longest established formal
methods. The VDM Specification Language is a language with a formally defined syn-
tax, static and dynamic semantics. Models in VDM are based on data type definitions
built from simple abstract types such as bool, nat and char and type constructors
that allow user-defined product and union types and collection types such as (finite) sets,
sequences and mappings. Type membership may be restricted by predicate invariants.
Persistent state is defined by means of typed variables, again restricted by invariants.
Operations that may modify the state can be defined implicitly, using pre- and post-
condition predicates, or explicitly, using imperative statements. Such operations denote
relations between inputs and pre-states and outputs and post-states, allowing for non-

1 The system class describes the system architecture and its deployment.

18

determinism. Functions are defined in a similar way to operations, but may not refer to
state variables.

Three different dialects exists for VDM: The ISO standard VDM Specification Lan-
guage (VDM-SL) [5], the object oriented extension VDM++ [6] and a further extension
of that called VDM Real Time (VDM-RT) [15,7]. All three dialects are supported by
the open source tool called Overture [9].

VDM++ and VDM-RT allow concurrent threads to be defined. In VDM-RT, the
concurrency modelling can be enhanced by deploying objects on different CPUs with
buses connecting them. Operations called between CPUs can be asynchronous, so that
the caller does not wait for the call to complete.

VDM-RT has a special system class where the modeller can specify the hardware
architecture, including the CPUs and their bus communication topology; the dialect
provides two predefined classes for the purpose, CPU and BUS. CPUs are instantiated
with a clock speed (Hz) and a scheduling policy, either First-come, first-served (FCFS)
or Fixed priority (FP). Only one system is allowed to be declared at a time for a single
model.

The initial objects (artifacts) defined in the model can then be deployed to the de-
clared CPUs using the CPU’s deploy operations. Buses are defined with a transmis-
sion speed (bytes/s) and a set of CPUs which they connect. Object instances that are not
deployed to a specific CPU (and not created by an object that is deployed), are auto-
matically deployed onto a virtual CPU. The virtual CPU is connected to all real CPUs
through a virtual bus. Virtual components are used to simulate the external environment
for the model of the system being developed.

In figure 1 a graphical representation of an in-car navigation radio system is shown,
which illustrates deployment with three CPUs connected by a single bus.

Fig. 1. Overview of the In-car Radio Navigation System

The in-car-navigation system shown in figure 1 is represented as a system class
in listing 1.1. Firstly, the application artifacts are declared as instance variables (mmi,

19

radio and navigation). The definition of the hardware appears after: in this case
three CPUs are declared (CPU1, CPU2 and CPU3) with a bus (BUS1) which connects
them. Finally, the system architecture and deployment of the artifacts to the specific
CPUs appear in the last section.�
system RadNavSys
instance variables
-- create artifacts
static public mmi : MMI := new MMI();
static public radio : Radio := new Radio();
static public navigation : Navigation := new Navigation();

-- create CPUs (policy, capacity)
CPU1 : CPU := new CPU (<FP>, 22E6);
CPU2 : CPU := new CPU (<FP>, 11E6);
CPU3 : CPU := new CPU (<FP>, 113E6);

-- create bus (policy, capacity, topology)
BUS1 : BUS := new BUS (<FCFS>, 72E3, {CPU1, CPU2, CPU3})

operations
public RadNavSys: () ==> RadNavSys
RadNavSys () ==

(navigation.setMmi(mmi);
radio.setMmi(mmi);
radio.setNavigation(navigation);
mmi.setRadio(radio);

CPU1.deploy(mmi,"MMI");
CPU2.deploy(radio,"Radio");
CPU3.deploy(navigation,"Nav");
...

);
end RadNavSys
� �

Listing 1.1. A typical system class

Special system invariants based on timing constraints can be validated through post
analysis of log files [3]. This enables the modeller to express time constraints on oper-
ations and instance variables; e.g. when volumeUp is called then no later than three
time units later the volume must be incremented. Log files used for post analysis can
be directly created by the VDM interpreter [10] enabling automated checking of such
time constraints, allowing a systematic rejection of models which do not meet the time
constraints either because the models are wrongly specified or the architecture used
is not powerful enough. At the this point in time only post analysis is possible but a
version to check system invariants at run-time is being investigated [11].

20

3 Ensuring Separation Between Software And Hardware

To enable automated exploration of hardware architectures for VDM-RT models, chang-
es must be made to the way deployment is expressed. Currently, the modeller must
create new projects with a custom system class for each architecture to be explored.
This method is inefficient and difficult to automate. The basic problem with the current
system definition is the close coupling between system architecture and system deploy-
ment. Ensuring a clear separation between architecture and deployment allows a system
to be configured and tested against any number of hardware architectures without the
hassle of creating new test projects or changing the system architecture.

This section will present a different approach to express deployment from the cur-
rent VDM-RT system class explained in section 2 while preserving the same run-time
properties.

This section will present a different approach to express deployment from the cur-
rent VDM-RT system class shown in section 2 while preserving the same run-time
properties. Instead of a single system class defining the deployment, our approach
uses a four level structure to define deployment, keeping a clear separation between the
model and the actual deployment. This allows tool automated exploration at all levels:

Abstract Software Architecture: Defines artifacts and how they depend on each other;
Abstract Hardware Architecture: Defines the abstract hardware architecture in terms

of nodes and communication channels, i.e. without speeds/capacities or policies;
Configuration: Defines deployment of artifacts presented in Abstract Software Archi-

tecture to nodes from the hardware present in the Abstract Hardware Architecture;
Deployment: Defines a concrete deployment using the Configuration; similar to the

constructor in the current system class.

For each of the levels above, a concrete definition and the relation between them
will be presented as VDM-SL types and functions in the following sections.

3.1 Abstract Software Architecture

The Abstract Software Architecture (ASA) is used to describe which application arti-
facts exist in the system and where inter-artifact calls occur. It represents the software
system at its most abstract point where only artifacts of applications are referred e.g.
mmi, radio and navigation from section 2. The ASA contains dependencies be-
tween the different artifacts representing the inter-artifact calls in the system. This de-
pendency description is used both (1) to check that a hardware architecture contains the
required communication channels and (2) for automatic exploration of hardware archi-
tectures fitting the software model. Listing 1.2 shows the VDM types used to represent
the ASA of a system.�
types
Artifact : seq of char

ASA ::

21

artifacts : set of Artifact
dependencies : map Artifact to set of Artifact

inv mk_ASA(artifacts,dependencies) ==
dom dependencies subset artifacts
and
dunion rng dependencies subset artifacts
and
forall key in set dom dependencies &

key not in set dependencies(key);
� �
Listing 1.2. Abstract Software Architecture types.

The Artifact type denotes a named system instance variables (e.g. mmi); the arti-
facts set denotes the set of artifacts which can be deployed; the dependencies
map denotes the dependencies between the artifacts.

3.2 Abstract Hardware Architecture

From an abstract point of view, a computing system is no more than a set of processing
nodes which communicate via channels. We name this representation: Abstract Hard-
ware Architecture (AHA). Listing 1.3 presents VDM types capable of representing an
abstract hardware architecture.�
types
Node ::
id : nat1;

ComChannel ::
nodes : set of Node;

AHA ::
nodes : set of Node
channels : set of ComChannels

inv forall c in set channels & c.nodes subset of nodes;
� �
Listing 1.3. Abstract Hardware Architecture as a VDM type

A processing node is represented by Nodewhich has an identifier and a communication
channel is represented by ComChannel, which contains the set of nodes it connects.
AHA defines a hardware architecture containing several nodes and channels connecting
them. AHAs can either be automatically generated based on the maximum number of
artifacts in the system or manually specified which is often the desired solution for an
industry where existing PCBs are available from previous projects.

3.3 Configuration

A configuration describes how a system is deployed to an abstract architecture. This
allows a system to be deployed onto a hardware configuration without explicitly spec-

22

ifying the limitations of the hardware like CPU speed and bus capacity. A configura-
tion defines a relation between artifacts from an ASA and the computing nodes from
an AHA. The dependencies stated by an ASA must be reflected in the communication
channels of the AHA for the configuration to be valid. This check is done by the function
checkDependencies. Listing 1.4 defines a configuration of an ASA to an AHA. A
configuration can be created either by automatic permutation of artifacts onto the nodes
of an AHA or by manually specifying the relations. The latter is the normal case for an
industry where specialized nodes such as processors with integrated GPS2 modules are
used, which will require a GPS artifact to be explicitly deployed to a specific node.�
types
NodeArtifactRelation : map Node to set of Artifact;

Configuration ::
asa : ASA
aha : AHA
relation : NodeArtifactRelation

inv mk_Configuration(asa,aha,relation) ==
checkDependencies(asa, aha, relation);
� �

Listing 1.4. Deployment Configuration

3.4 Deployment

The deployment of a system is the process of restricting the computational power of the
nodes and the communication channels. A node must be limited to the computational
power of a specific CPU with a maximum number of instructions it can perform per sec-
ond. The same applies to buses where the transfer rate is limited. Listing 1.5 shows the
Deployment type which represents a mapping between Nodes and ComChannels
to concrete CPUs and buses.�
Deployment ::
config : Configuration
buses : map ComChannel to BUS
cpus : map Node to CPU

inv mk_Deployment(config,buses,cpus) ==
(forall channel in set config.aha.channels &

channel in set dom buses)
and
(forall node in set config.aha.nodes & node in set dom cpus)
and card config.aha.channels = card dom buses
and card config.aha.nodes = card dom cpus;
� �

Listing 1.5. Specifies the type of each computational node and communication channel

2 Global Positioning System

23

Computational nodes and communication channels are abstractions of the actual
physical implementation where a circuit board is manufactured, which among other
things consists of the main components CPUs and buses which VDM-RT can reason
about. In listing 1.6 two VDM types are listed. CPU represents a computational Node
where the node is limited from being infinitely fast to a specific frequency slowing down
the execution of instructions. The same applies to the BUS, which is a limited version
of the ComChannel, where a transmission speed limits the number of bytes which can
be transmitted per second.�
CPU ::
id : nat1
speed : nat1
brand : seq of char
scheduling : <FP> | <FCFS>;

BUS ::
id : nat1
speed : nat1
type : <FILO>;
� �

Listing 1.6. Hardware types

3.5 New Deployment Work-flow

To use the four layered separation described above some changes must be made to the
deployment work flow. However, not all of the above levels require the modeller’s direct
attention, since most of the changes are conceptual separations of system elements. It is
important to understand that the output of the separation proposed above can be mapped
to the current VDM-RT system class without losing details. The difference is that this
clear separation between the different levels, enables the modeller to do exploration at
all levels. It also enables tools to be developed to assist this process.

The work-flow in ordinary VDM-RT can be described with the following steps:

1. Defining the VDM-RT model.
2. Identifying the static artifacts of the model.
3. Defining the hardware nodes: CPU and BUS and instantiating the artifacts.
4. Deploying the artifacts to the CPUs.

This is currently all done in a single class called system with no clear indication
of what is artifacts and what is hardware and deployment.

The work-flow with the new sub divided structure:

Model development: The first step is to develop the actual VDM model as in the cur-
rent VDM-RT workflow.

24

System configuration: The modeller configures the artifacts of the system as usual in
a VDM-RT system class.

Extract artifacts and dependencies: If all artifact relations are expressed as either ar-
tifact constructor arguments or parsed as arguments to operations on artifacts, then
this step can be automated. Artifacts will be extracted from the system class and
their dependencies from the system constructor, enabling an ASA to be created3:

Composing a new AHA: The ASA defines the artifacts and their required dependen-
cies while the AHA define an abstract hardware architecture which respects the
dependencies from the ASA extracted from the artifacts dependencies. Such an
AHA can either be automatically generated based on the ASA or it can be manu-
ally specified by the user.

Configuration: The configuration defines how each artifact is linked to a node of the
given AHA. This can be specified manually by the user or a range of configurations
can be generated from the pair (ASA, AHA).

Deployment: The final deployment is the limitation of an AHA. This can again be
specified by the user to a single fixed deployment or the user can enter a set of
possible CPUs which could be used per node allowing a range of deployments to
be generated to explore these different CPU limitations.

Evaluation: Finally, the model can be executed with a single specific deployment and
its system invariants can be checked either through post-analysis or at run-time both
leading to an accept / reject verdict of the tested deployment. This indicates to the
modeller if this configuration is acceptable to the system leaving the decision of
which to choose to the modeller.

The steps described above can be expressed through the formula 1.
(
ASA+AHA

)
→∗ Configuration→∗ Deployment ≡ system (1)

The arrow→∗ denotes that many elements can be generated with respect to the left
side of the arrow. In the first case one or more configurations can exist which configures
a particular pair of ASA and AHA. Each configuration defines how the ASA is mapped
onto the AHA but does not restrict the hardware in any way. Similar to the configuration,
one or more deployments can exist which restricts a particular configuration by limiting
each computational node to a specific frequency and each communication channel to a
specific speed. Finally it can be seen from the system in section 2 that the left side of
the formula below is equivalent to the information in the system class in VDM-RT.

4 The Exploration of Alternative System Architectures

Exploring alternative system architectures is supported by VDM-RT and in section 3 it
has been described how the process of deployment can be split up into levels which can
be explored for alternatives. The goal is to provide the means to answer the questions

3 In this paper we do not deal with references which can be passed between artifacts at run-time
which also leads to new dependencies.

25

stated in the introduction. However because these questions are seen from the modellers
point of view, we will try to relate them to the levels of the formula 1 to make it easier
to describe how this work provides (partial) answers to these questions.

The requirements extracted from the questions are as follows:

– Exploring alternative artifact distribution on a fixed hardware configuration.
– Exploring alternative hardware configurations for an ASA.
– Exploring alternative deployment parameters for a fixed configuration.

The questions require the exploration to support different distribution of artifacts
on a fixed distributed hardware platform; the ability to explore parameters for a specific
hardware such as CPU capacity; and finally a way to validate such a system architecture.
Futhermore we can add the ability to generate hardware architectures, but this may be
mainly of academic value. The requirements stated above are covered in the following
subsections. In addition the validation is addressed in section 4.4.

4.1 Exploring Alternative Artifact Distribution On A Fixed Hardware
Configuration

To explore alternative artifact distribution, an ASA is required to obtain the artifacts and
their dependencies. Since the hardware configuration is fixed, an AHA is also provided
by the modeller. This gives the pair (ASA, AHA) as input to the exploration of alterna-
tive artifact distribution. Formula 2 illustrates where this takes place in the overall work
flow where the underlined part denotes what is produced. The result of the generation
of alternative distributions is a set of Configurations all for the same system.

(
ASA+AHA

)
→∗ Configuration→∗ Deployment ≡ system (2)

Listing 1.7 shows the signature of a VDM function which produces the desired set
of configurations:�
createAltDisbs : ASA * AHA -> set of Configuration
createAltDisbs(asa, aha) == is not yet specified;
� �

Listing 1.7. Signature of a function for generation of Configurations from an ASA.

4.2 Exploring Alternative Hardware Configurations For An ASA

When the goal is to find the optimal hardware configuration for a given system it can
often be difficult and time consuming to create all possible combinations of nodes and
communication channels. It is however important to understand that this is possibly
only of academic value since industrial companies often have of-the-shelf hardware
platforms which they want to explore. AHAs can be generated from the number of

26

unique artifacts from an ASA. The formula 3 shows where in the overall work flow this
exploration contributes again using the underlined part as the produced aspects.

(
ASA+AHA

)
→∗ Configuration→∗ Deployment ≡ system (3)

A signature of the VDM function to create the AHAs is shown in listing 1.8. It takes
an ASA as input and returns a set of AHAs.�
createAHAs : ASA -> set of AHA
createAHAs(asa) ==
let maxNodes = card asa.artifacts
in

...
� �
Listing 1.8. Signature of a VDM function for the automatic AHA generation.

4.3 Exploring Alternative Deployment Parameters For A Fixed Configuration

Exploring alternative deployment parameters for an otherwise fixed system is one of
the most important requirements because this relates directly to the costs of the final
product. If a cheaper CPU can be used in mass production, money can be saved by the
manufacturer of such a system. Exploring alternative deployment parameters means that
one can come up with all possible limitations of the hardware, reducing either a CPUs
computational capacity or limiting the bandwidth of a bus. An unlimited range of such
deployments can be generated however this is not useful in practice since only a small
number of CPUs and buses can be used in a specific hardware topology. In most cases,
a PCB design already exists which supports a fixed number of different CPUs from a
specific family. Thus the exploration is based on knowing that a small list of possible
CPUs or buses are available to be used as nodes. The exploration generates a set of
deployments and takes an otherwise fixed system as input together with a set of avail-
able CPUs per node of the AHA and a set of available buses for each communication
channel. Formula 4 shows where in the overall work flow this takes place.

(
ASA+AHA

)
→∗ Configuration→∗ Deployment ≡ system (4)

The signature of a VDM function is shown in listing 1.9 which takes a fixed con-
figuration of a system plus two maps where the available CPUs and BUSs are given for
the resources in the AHA.�
exploreDeployParams : Configuration *

map Node to set of CPU *

27

map ComChannel to set of BUS
-> set of Deployment

exploreDeployParams(config, nCm, cBm) == is not yet specified;
� �
Listing 1.9. Signature of a VDM function for alternative deployment parameter exploration.

4.4 Evaluation Of The Architectures

The ability to automatically determine if a specific deployment is good enough is very
important now that we have presented the functionality to automatically generate al-
ternatives as early as the AHA in the work flow. The potentially results is a very large
number of deployments, since a split in the flow at an early stage doubles the output of
all later steps. Currently, the only way to determine if a deployment is “good enough”
is by manually inspecting the execution log through the graphical viewer named Real-
Time Log Viewer. This viewer is able to illustrate how the scheduler creates threads,
shifts them in and out in relation to time etc. To overcome the challenge of manual in-
spection work is being done in [11] to enable run-time checking of system invariants.
Such invariants can then express time constraints in the system, which is exactly what
is needed when deployments have to be validated. If the modeller provides system in-
variants expressing the critical time constraints of the model then the run-time checking
of these invariants will be able to tell us if a given deployment has not violated any
invariants and thus be accepted.

5 Case Study: In-car Radio Navigation

This case study is based on an already known case explored in both [3] and [13]. How
this new structure can be used to do deployment exploration will be presented. The new
way to express a system configuration is shown in listing 1.10, it can be seen that no
deployment is included within the system class. This is very similar to the system from
section 2.�
system RadNavSys
instance variables
-- create artifacts
static public mmi : MMI := new MMI();
static public radio : Radio := new Radio();
static public navigation : Navigation := new Navigation();

operations
public RadNavSys: () ==> RadNavSys
RadNavSys () ==

(navigation.setMmi(mmi);
radio.setMmi(mmi);
radio.setNavigation(navigation);
mmi.setRadio(radio);

28

);
end RadNavSys
� �

Listing 1.10. In-Car-Navigation system.

A new grammar for deployment in VDM-RT is proposed in listing 1.11, allow-
ing the deployment elements: AHA, configuration and deployment to be specified. All
the elements can be generated through exploration as explained in section 4. The list-
ing 1.11 illustrates how the deployment of the in-car-navigation system can be done
with this new syntax. The deployment is specified with all elements, but without the
ASA, since it can automatically be extracted from the system class in listing 1.10. Any
of the blocks aha, configuration and deployment can be left empty in the
grammar, indicating that they should be automatically generated. However by explic-
itly specifying all blocks only a single deployment will exist as in the original system
definition from section 2.�
aha

Channel1 := {node1, node2, node3}

configuration

node1 := {mmi};
node2 := {radio}
node3 := {navigation}

deployment

node1 := CPU(200MHz, <FP>)
node2 := CPU(100MHz, <FP>)
node3 := CPU(1000MHz, <FP>)
Channel1 := BUS(72E3, <CSMACD>)
� �

Listing 1.11. New deployment specification for the In-Car-Navigation system

What if the deployment specified in listing 1.11 is an acceptable deployment but the
modeller likes to do future investigation through the third question: Is it possible to re-
place components by cheaper, less powerful, equivalents to save cost while maintaining
the required performance targets? One option is to try out deployments where one of
the nodes is limited to one of three different CPUs as shown in listing 1.12. It can be
seen that the grammar allows nodes to be defined with a set of CPUs instead of a single
CPU this allows the exploration to use permutations of CPUs for each node.�
deployment

node1 := {CPU(200MHz, <FP>),
CPU(100MHz, <FP>),

29

CPU(50MHz, <FP>)}
node2 := CPU(100MHz, <FP>)
node3 := CPU(1000MHz, <FP>)
Channel1 := BUS(72E3, <FCFS>)
� �

Listing 1.12. Alternative deployment block for exploration of deployment parameters.

When the exploration is done for the deployment block as shown in listing 1.12,
three alternatives will be generated, one with each type of CPU. All these alternatives
can then automatically be validated against the same tests to see if all of them fulfils the
system invariant4. If so the modeller can freely decide which option is the best choice.

6 Concluding Remarks

Choosing the optimal architecture for a system is challenging, not only can it be difficult
to determine but VDM-RT currently lacks the ability to allow exploration of alternatives
in an efficient way without the need of duplicating the model. This work has proposed
a way to enable exploration through separation of model and deployment, where ex-
ploration is possible at all levels of the deployment process. The common questions a
modeller might ask when choosing a optimal architecture have been addressed and ex-
ploration functions proposed. We think that this work will help the system architect to
determine an optimal architecture for a given system by enabling easy automated explo-
ration. Such an exploration will be able to create all alternatives of AHA, Configuration
and deployments and evaluate them against system invariants. VDM-RT priority set-
tings for functions and operations has not been addressed in this work but will be future
investigated in the near future.

The plan is to implement the features described in this paper in the Overture plat-
form such that it can be exploited for automatic co-model analysis in the DESTECS
project as well. We expect that this will be completed before the end of 2011.

Acknowledgements

This work was partly supported by the EU FP7 DESTECS Project. We appreciate the
input we have had from the different partners on this work. In addition we would like
to thank Nick Battle for valuable input on this paper.

References

1. Bjørner, D., Jones, C. (eds.): The Vienna Development Method: The Meta-Language, Lec-
ture Notes in Computer Science, vol. 61. Springer-Verlag (1978)

2. Broenink, J.F., Larsen, P.G., Verhoef, M., Kleijn, C., Jovanovic, D., Pierce, K., F., W.: Design
support and tooling for dependable embedded control software. In: Proceedings of Serene
2010 International Workshop on Software Engineering for Resilient Systems. ACM (April
2010)

4 The system invariants are not included in this paper but can be found in [3].

30

3. Fitzgerald, J.S., Larsen, P.G., Tjell, S., Verhoef, M.: Validation Support for Real-Time Em-
bedded Systems in VDM++. In: Cukic, B., Dong, J. (eds.) Proc. HASE 2007: 10th IEEE
High Assurance Systems Engineering Symposium. pp. 331–340. IEEE (November 2007)

4. Fitzgerald, J.S., Larsen, P.G., Verhoef, M.: Vienna Development Method. Wiley Encyclope-
dia of Computer Science and Engineering (2008), edited by Benjamin Wah, John Wiley &
Sons, Inc

5. Fitzgerald, J., Larsen, P.G.: Modelling Systems – Practical Tools and Techniques in Software
Development. Cambridge University Press, The Edinburgh Building, Cambridge CB2 2RU,
UK, Second edn. (2009), ISBN 0-521-62348-0

6. Fitzgerald, J., Larsen, P.G., Mukherjee, P., Plat, N., Verhoef, M.: Validated Designs for
Object–oriented Systems. Springer, New York (2005), http://www.vdmbook.com

7. Hooman, J., Verhoef, M.: Formal semantics of a VDM extension for distributed embedded
systems. In: Dams, D., Hannemann, U., Steffen, M. (eds.) Concurrency, Compositionality,
and Correctness, Essays in Honor of Willem-Paul de Roever. Lecture notes in Computer
Science, vol. 5930, pp. 142–161. Springer-Verlag (2010)

8. Jones, C.B.: Systematic Software Development Using VDM. Prentice-Hall International,
Englewood Cliffs, New Jersey, second edn. (1990), iSBN 0-13-880733-7

9. Larsen, P.G., Battle, N., Ferreira, M., Fitzgerald, J., Lausdahl, K., Verhoef, M.: The Overture
Initiative – Integrating Tools for VDM. ACM Software Engineering Notes 35(1) (January
2010)

10. Lausdahl, K., Larsen, P.G., Battle, N.: A Deterministic Interpreter Simulating a Distributed
Real Time System using VDM. Submitted for publication (2011)

11. Ribeiro, A., Lausdahl, K., Larsen, P.G.: Run-Time Validation of Timing Constraints for
VDM-RT Models. Submitted for publication (2011)

12. Verhoef, M.: On the use of VDM++ for Specifying Real-Time Systems. In: Fitzgerald, J.S.,
Larsen, P.G., Plat, N. (eds.) Towards Next Generation Tools for VDM: Contributions to the
First International Overture Workshop, Newcastle, July 2005. pp. 26–43. School of Comput-
ing Science, Newcastle University, Technical Report CS-TR-969 (June 2006)

13. Verhoef, M.: Modeling and Validating Distributed Embedded Real-Time Control Systems.
Ph.D. thesis, Radboud University Nijmegen (2008), ISBN 978-90-9023705-3

14. Verhoef, M., Larsen, P.G.: Interpreting Distributed System Architectures Using VDM++ – A
Case Study. In: Sauser, B., Muller, G. (eds.) 5th Annual Conference on Systems Engineering
Research (March 2007), Available at http://www.stevens.edu/engineering/cser/

15. Verhoef, M., Larsen, P.G., Hooman, J.: Modeling and Validating Distributed Embedded Real-
Time Systems with VDM++. In: Misra, J., Nipkow, T., Sekerinski, E. (eds.) FM 2006: Formal
Methods. pp. 147–162. Lecture Notes in Computer Science 4085 (2006)

31

Facilitating Consistency Check between Specification
and Implementation with MapReduce Framework

Shigeru KUSAKABE, Yoichi OMORI, and Keijiro ARAKI

Grad. School of Information Science and Electrical Engineering, Kyushu University
744, Motooka, Nishi-ku, Fukuoka city, 819-0395, Japan

Abstract. We often need well-formed specifications in order to properly main-
tain or extend a system by members who were not in charge of the original de-
velopment. In contrast to our expectation, formal specifications and related doc-
uments may not be maintained, or not developed in real projects. We are trying
to build a framework to develop specifications from a working implementation.
Testability of specifications is important in our framework, and we develop exe-
cutable, or testable, formal specifications in model-oriented formal specification
languages such as VDM-SL. We figure out a formal specification, check it with
the corresponding implementation by testing, and modify it if necessary. While
the specific level of rigor depends on the aim of the project, millions of tests
may be performed in developing highly reliable specifications. In this paper, we
discuss our approach to reducing the cost of specification test. We use Hadoop,
which is an implementation of the MapReduce framework, so that we can ex-
pect the scalability in testing specifications. We can automatically distribute the
generation of test cases from a property, the interpretation of the executable spec-
ification and the execution of its corresponding implementation code for each test
data using Hadoop. While straightforward sequential execution for large data set
is expensive, we observed scalability in the performance in our approaches.

1 Introduction

While we are supposed to have adequate documents in ideally disciplined projects, we
may not have such documents in many actual projects. In spite of potential effectiveness
of formal methods, formal specifications and related documents may not be maintained,
or not developed. Nonetheless, we often need well-formed specifications in order to
properly maintain or extend a system by members who were not familiar with the details
of current implementation.

We are trying to build a framework to develop specifications for maintenance from
the actual code of working implementation plus ill-maintained specifications for devel-
opment if they exist. Fig. 1 shows our concept.

We expect we can figure out some specifications by using techniques of software
engineering while we assume documents used in the development may be unreliable
and members familiar with the detail of the development may be unavailable. However,
we will rely on testing to check the consistency between the implementation and the
specifications in the process of making the specifications close to ideal ones.

We can develop executable, or testable, formal specifications in model-oriented for-
mal specification languages such as VDM-SL. By using the interpretor of VDMTools,

Fig. 1. Developing specifications for maintaining or extending a system from source code plus
specifications that are not well managed during the development.

we can test executable specifications in VDM languages to increase our confidence in
the specifications. In our framework, we expect executable specifications to play an im-
portant role. We develop a formal specification from the running implementation, check
it with the result or behavior of the corresponding implementation by testing, and mod-
ify and retest it if necessary. In contrast to the usual software development, we modify
the specifications to be consistent with the corresponding running code.

In this paper, we discuss our approach to reducing the cost of testing specifications.
In the testing phase, millions of tests may be performed in developing highly reliable
specifications, while the specific level of rigor depends on the background of the project.
Our approach is a brute-force one which adopts recent cloud computing technologies.
We use Hadoop, which is an implementation of the MapReduce framework, so that we
can expect the scalability in testing specifications. We can automatically distribute the
generation of test data from a property, the interpretation of the executable specification
and the execution of its corresponding implementation code for each test data using
Hadoop. While straightforward sequential execution for large volume of test data is
expensive, our preliminary evaluation indicates that we can expect scalability of our
approach.

The rest of this paper is organized as follows. We explain our approach to reduce
the cost of testing for large data set by using emerging cloud technology in section 2.
We outline our framework in section 3. We evaluate our testing framework in section 4.
Finally we conclude in section 5.

2 Approach with Cloud Technology

2.1 Elastic platform

Our approach shares the issues of testing with that of usual software development. As
the size and complexity of software increase, its test suite becomes larger and its exe-
cution time becomes a problem in software development.

Large software projects may have large test suites. There are industry reports show-
ing that a complete regression test session of thousands lines of software could take
weeks of continuous execution [5]. If each test is independent with each other, high
level of parallelism provided by a computational grid can be used to speed up the test
execution [4]. Distributing tests over a set of machines aims at speeding up the test stage
by executing tests in parallel [7].

33

We consider an approach to leveraging the power of testing by using elastic cloud
platforms to perform large scale testing. Increasing the number of tests can be effective
in obtaining higher confidence, and increasing the number of machines can be effective
in reducing the testing time.

The cloud computing paradigm seems to bring a lot of changes to many fields. We
believe it also has impact on the field of software engineering and consider an approach
to leveraging light-weight formal methods by using cloud computing which has the
following aspects [1]:

1. The illusion of infinite computing resources available on demand, thereby elimi-
nating the need for cloud computing users to plan far ahead for provisioning;

2. The elimination of an up-front commitment by cloud users, thereby allowing or-
ganizations to start small and increase hardware resources only when there is an
increase in their needs; and

3. The ability to pay for use of computing resources on a short-term basis as needed
and release them as needed, thereby rewarding conservation by letting machines
and storage go when they are no longer useful.

We can prepare a platform of arbitrary number of machines and desired configura-
tion depending on the needs of the project.

2.2 MapReduce

While we can prepare a platform of an arbitrary number of computing nodes and pre-
pare an arbitrary number of test cases, we need to reduce the cost of managing and
administrating of the platform and runtime environment.

The MapReduce programming model was created in order to generate and process
large data sets on a cluster of machines [3]. Programs are written in a functional style,
in which we specify mapper functions and reducer functions, as in map and reduce
(or fold) in functional programming language. Fig. 2 shows the concept of map and
reduce. For example, when we calculate square-sum of the elements in a sequence
(list in typical functional programming languages), we specify a square function as the
function fM , an add as the function fR, and 0 as the initial value init. In map, the func-
tion fM , square, is applied to every element in the sequence, and in reduce, squared
values are reduced to a single value by using fR and init. In MapReduce programming
framework, input data set is split into independent elements, and each mapper task pro-
cesses each independent element in a parallel manner. Data elements are typically data
chunks when processing a huge volume of data. The outputs of the mappers are sorted
and sent to the reducer tasks as their inputs. The combination of map/reduce phase has
flexibility, thus, for example, we can align multiple map phases in front of a reduce
phase.

MapReduce programs are automatically parallelized and executed on a large cluster
of machines. The runtime system takes care of the details of partitioning the input data,
scheduling the program’s execution across a set of machines, handling machine failures,
and managing the required inter-machine communication. Its implementation allows
programmers to easily utilize the resources of a large distributed system without expert
skills in parallel and distributed systems.

34

Fig. 2. Concept of the MapReduce programming model.

When using this MapReduce framework, input elements are test data, f can be
an executable specification in VDM or actual code fragment under test, and output
elements are test results.

3 Testing Framework

In this section, we discuss our testing framework, which uses Hadoop to reduce the
cost of testing with a large data set. Hadoop is an open source software framework
implementing MapReduce programming model [6] written in Java. While our frame-
work can be adjusted to testing in a typical software development, we focus on testing
specifications, which are figured out based on a corresponding implementation.

3.1 Property-based testing

Fig. 3 shows the outline of our testing framework. First, we generate test data according
to the specified property. We use a property-based testing tool, QuickCheck [2], which
supports a high-level approach to testing Haskell programs by automatically generating
random input data. QuickCheck defines a formal specification language to state prop-
erties, and we can customize test case generation of QuickCheck including the number
of test cases. We modify QuickCheck to fit to our approach for testing formal spec-
ifications with Hadoop. We try to automatically distribute the generation of test data
for a formal specification in addition to the execution of the formal specification. We
store the generated data in a file on the Hadoop file system. In the evaluation phase, we
pass the test data to mappers, each mapper execute the executable specification and its
corresponding implementation code for each test data, and then outputs the comparison
result. Reducers receive and aggregate the comparison results.

35

Fig. 3. Outline of our approach to property-based testing.

Table 1. Configuration of the platform

NameNode JobTracker Slave
CPU Xeon E5420 Xeon E5420 Xeon X3320

2.50GHz 4core 2.50GHz 4core 2.50GHz 4core
Memory 3.2GB 8.0GB 3.2GB
Disk 2TB 1TB 140GB

3.2 Hadoop Streaming

In the Hadoop framework, we write mapper and reducer functions in Java by default.
However, the Hadoop distribution contains a utility, Hadoop Streaming, which allows us
to create and run jobs with any executable or script that uses standard input/output as the
mapper and/or the reducer. The utility will create a mapper/reducer job, submit the job
to an appropriate cluster, and monitor the progress of the job until it completes. When
an executable is specified for mappers, each mapper task will launch the executable
as a separate process when the mapper is initialized. When an executable is specified
for reducers, each reducer task will launch the executable as a separate process then
the reducer is initialized. This Hadoop Streaming is useful in implementing our testing
framework. We execute specifications in VDM with the combination of the command-
line interface of VDMtools and the mechanism of Hadoop Streaming.

4 Performance evaluation

4.1 Evaluation of a formal specification for a large data set

In order to examine the effectiveness of our testing framework using Hadoop, we mea-
sured performance in testing a specification of the Enigma machine given in [8] for a
large data set. The Enigma cipher machine is basically a typewriter composed of three
parts: the keyboard to enter the plain text, the encryption device and a display to show
the cipher text. Both the keyboard and the display consist of 26 elements, one for each
letter in the alphabet.

The configuration of the platform is shown in Table 1. We show the result of elapsed
time in Fig. 4. As we can see from the results, the elapsed time of the Hadoop version

36

reduced when the number of tests was over four hundreds. Since the Hadoop framework
is designed for large scale data processing, we see no advantage in elapsed time for
small set of test data. Each computation node has four processor cores, and we can
achieve speedup even on a single node as Hadoop can exploit thread-level parallelism
on multi-core platforms.

Fig. 4. Elapsed time for VDM enigma specification in increasing the number of tests on the
various number of nodes.

4.2 Evaluation of our testing framework for large data set

In order to examine the effectiveness of our approach, we measured elapsed time in
testing with an implementation of a small address book system and the corresponding
specification in VDM on Hadoop, for a variable number of test cases. The property we
used is idempotency, which is an invariant to check if the sorting operation obeys the
basic rule: applying sort twice has the same result as applying it only once.

We show the result in Fig. 5. As we see in Fig. 5, until the number of tests exceeds
about 300, the total elapsed time of the Hadoop version is more than that of non-Hadoop
version while the former uses eight nodes and the latter uses only a single local node.
The results of Hadoop version include some overheads such as distributing test data and
collecting evaluation results over the network. After that point, the gap between the two

37

version becomes wider (i.e. the Hadoop version becomes faster) as the number of test
data increases. Thus, our approach is suitable for a large scale test data set.

Fig. 5. Elapsed time in increasing the number of test data for idempotency on the various number
of nodes.

We show the result on speedup in Fig. 6. The speedup ratio is calculated as (time for
N Hadoop nodes) / (time for local single node). As we see in Fig. 6, the increase of the
number of slave machines is generally effective in reducing testing time. However, the
speedup ratio against the number of slaves does not seem ideal. There are some troughs
in the graph. While one of the reasons is overhead of using Hadoop, we will investigate
further to achieve more efficient environment.

5 Concluding Remarks

In this paper, we presented preliminary evaluation results of our approach to reducing
the cost of testing executable specifications for a large data set using Hadoop. Testabil-
ity of a specification helps us increase our confidence in the specification. We are trying
to develop executable formal specifications while we assume documents used in the de-
velopment may be unreliable and members familiar with the detail of the development
may be unavailable. We rely on testing to check the consistency between the implemen-
tation and the specifications. In order to increase our confidence in the specification, we

38

Fig. 6. Speedup in increasing the number of test data for idempotency on the various number of
nodes.

can increase the number of test cases on elastic computing platforms at reasonable cost.
We are able to automatically distribute the interpretation of the executable specification
and the execution of its corresponding implementation code for each test data by using
Hadoop. While straightforward sequential execution for large data set is expensive, we
observed scalability in the performance in our approaches.

As one avenue of future works, we will investigate a more detailed performance
breakdown to achieve more efficient environment. We will also try to extend usabil-
ity of our framework. VDMTools and other programming language systems include
test coverage statistics tools. We will extend our framework to exploit these tools in a
parallel and distributed way to examine the impact of our approach on increasing test
coverage.

References

1. Michael Armbrust, Armando Fox, Rean Griffith, Anthony D. Joseph, Randy Katz, Andy Kon-
winski, Gunho Lee, David Patterson, Ariel Rabkin, Ion Stoica, and Matei Zaharia. Above the
clouds: A berkeley view of cloud computing. Technical report, UCB/EECS-2009-28, Reliable
Adaptive Distributed Systems Laboratory, February 2009.

2. Koen Claessen and John Hughes. Quickcheck: a lightweight tool for random testing of haskell
programs. ACM SIGPLAN Notices, 35(9):268–279, 2000.

3. Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplified data processing on large clusters.
Commun. ACM, 51(1):107–113, January 2008.

4. A. DUARTE, W. CIRNE FILHO, F. V. BRASILEIRO, and P. D. L. MACHADO. Gridunit:
Software testing on the grid. In Proceedings of the 28th ACM/IEEE International Conference
on Software Engineering, volume 28, pages 779 – 782. ACM, 2006.

39

5. Sebastian Elbaum, Alexey G. Malishevsky, and Gregg Rothermel. Prioritizing test cases for
regression testing. In In Proceedings of the International Symposium on Software Testing and
Analysis, pages 102–112. ACM Press, 2000.

6. Hadoop. As of Jan.1, 2011. http://hadoop.apache.org/.
7. G. M. Kapfhammer. Automatically and transparently distributing the execution of regres-

sion test suites. In Proceedings of the 18th International Conference on Testing Computer
Software, 2001.

8. Peter Gorm Larsen, Paul Mukherjee, Nico Plat, Marcel Verhoef, and John Fitzgerald. Vali-
dated Designs For Object-oriented Systems. Springer Verlag, 1998.

40

Counterpoint: Towards a Proof-Support Tool for VDM

Ken Pierce

School of Computing Science, Newcastle University,
Newcastle upon Tyne, NE1 7RU, United Kingdom.

K.G.Pierce@ncl.ac.uk

Abstract. This paper is a position paper that presents ideas for an extension to
the Overture tool platform that will support the process of proof in the VDM
family of formal languages. The intention of the paper is to garner interest in
building this extension and to promote discussion of a development road map.
While creation of formal specifications in VDM is currently supported by two
robust tools —the commercial VDMTools and the open-source Overture tool—
these tools focus on execution of specifications and automated testing. This new
extension to Overture will focus on support for proof and act as both a counterpart
and counterpoint to the existing tools. Hence the name of the extension will be
Counterpoint. Counterpoint will extend the Overture tool, which is built using
the Eclipse framework. It will support the management of discharging a set of
proof obligations generated from VDM specifications. It will support both hand-
crafted proofs in the natural deduction style and mechanization of proofs through
external tools.

1 Introduction

VDM (Vienna Development Method) is a mature and widely-used formal method. It is
model based, meaning that specifications in VDM are explicit models of the systems
which they represent, with a central notion of state and operations. Operations can be
defined both implicitly in terms of pre- and post-conditions and explicitly using con-
structs familiar to programmers.

VDM is supported by two robust tools: the commercial VDMTools1 and the open-
source Overture tool2. These tools can syntax check VDM specifications and include
static type checkers. Both tools can also execute a subset of VDM specifications (those
with explicit function definitions) and perform dynamic checking at run-time. Single
runs can be initiated by the tool user, as well as automated execution of a large number
of test cases.

The expressiveness of VDM means however that static type checking is in general
undecidable [DHB91]. For example, the consistency of functions with pre-conditions
and the satisfiability of implicit functions cannot be checked statically [Ber97]. Where
static checks cannot be performed, proof obligations can be generated [Ber97]. These
proof obligations must be discharged by hand in order to show that a model is consis-
tent. The generation of these obligations is supported by both VDMTools and Overture,
however further tool support for proof is minimal at best.

1 http://www.vdmtools.jp/en/
2 http://www.overturetool.org/

Central to the idea of the original VDM-SL3 language is the notion of refine-
ment [Jon90]. In refinement, abstract specifications are shown to be refined (or reified in
VDM terminology) by more concrete specifications. The aim being to eventually reach
a concrete specification that can be realised in a programming language, with (rela-
tive) correctness to the original abstract specification being preserved by the reification
chain.

Typically, this process involves data reification (finding concrete representations for
abstract data types such as sets) and operation decomposition (demonstrating that the
behaviour of abstract operations is realised by one or more concrete operations) [Jon90].
The correctness of reification is demonstrated by proof.

The author of this paper was first introduced to VDM over seven years ago, during
his undergraduate degree. This included a few lectures and a piece of coursework on
proof. Later, the author’s thesis [Pie09] addressed the correctness of Simpson’s four-
slot mechanism [Sim90] for asynchronous communication using VDM.

The author also collaborated with colleagues from Newcastle University in an effort
to use VDM to verify the “Mondex” electronic purse challenge problem4 of Grand
Challenge 6 [Woo06,SCW00]. This work included the production and checking of a
large number of proofs by hand. The team agreed that while it was an excellent learning
exercise, undertaking the proof task by hand was a challenge they would not wish to
repeat again soon!

The main point of this author’s introduction is to assert that proof is (and always has
been) central to world of VDM and that the push for industrial adoption and tool-support
has drawn focus away from this key aspect. This paper is intended to be the next (albeit
initially small) step on the road to redressing that balance. The end of this road will
see many new features available in the Overture tool, which —importantly— should
compliment the current feature set and be of great benefit to the VDM community. The
author has chosen to name this extension to the Overture tool “Counterpoint”.

While the choice of another musical term may seem a little tongue-in-cheek, the
name should hopefully evoke the idea of two seemingly different parts in a musical
piece working together to form a richer whole — as execution and testing can work
together with proof in verification. A second (older) meaning to the term, that of a
counter argument, evokes the notion of proof. Finally, the name is a simple English
word that rolls off the tongue easily.

In the remainder of this paper, Section 2 proposes a set of features for Counter-
point, Section 3 reiterates the aims of the Overture initiative and finally Section 4 draws
conclusions and provides a look at the way ahead.

2 Counterpoint: a Proof-Support Tool for VDM

Counterpoint will be an extension to the Overture tool. It will provide a Proof perspec-
tive to complement the current VDM (editing) and Debug (execution) perspectives. The
main view (an element of a perspective in Eclipse terminology) provided by Counter-
point will be a proof obligation manager. The proof obligation manager will display a

3 VDM++ and VDM-RT are object-oriented extensions of VDM-SL.
4 A technical report describing this work is in preparation at the time of writing.

42

list of the proof obligations that must be discharged for the current project. Proof obli-
gations that assert a model’s consistency can already be generated from Overture and
VDMTools [LLR+10,Ber97]. It is expected that the current underlying proof obliga-
tion generator in Overture will remain unchanged, with the graphical interface being
superseded by Counterpoint’s proof perspective.

For refinement proofs, it will be necessary to define a retrieve function (or desig-
nate a function from a specification) and to define the relationship between abstract and
concrete operations. Counterpoint will generate proof obligations based on this infor-
mation. This will likely require some changes to the underlying framework to allow
management of multiple specifications and the relationships between them.

Each proof obligation can be discharged by associating it with a proof artifact.
Counterpoint will support three types of proof artifact: automated proof results, gener-
ated by plug-ins and external tools; natural deduction proofs, constructed in the Coun-
terpoint editor; and other evidence, for less formal proofs. These are explained in greater
detail below.

Support for “as automated as possible” proofs (with fully automatic proving being
the ultimate goal) is important if the aim is to have proof adopted in industry as a ver-
ification technique5. The author also believes that the act of crafting proofs and seeing
the process is an excellent reason to undertake the task by hand. The author therefore
believes that Counterpoint should be a platform in which automated proof and hand-
crafted proof can coexist, providing the user with the best choice of tools for their
purpose.

The proof manager will give a visual mnemonic indicating the status of proof obli-
gations. Red will indicate that a proof obligation is yet to be discharged and green indi-
cates a proof obligation that has been discharged. A blue colour will be used for proof
obligations that the user asserts to be true, but which cannot be checked automatically
by the tool (i.e. other proof evidence). This approach is also taken by the Rodin tool
for Event-B [Abr07], however Counterpoint will ensure that some form of evidence is
associated with a ‘blue’ proof.

Full automation of proofs for VDM is unlikely (because of the need to find witness
values for existential quantifications, for example), therefore some form of user-guided
proof is likely to be necessary. It is key therefore that the various Counterpoint features
give understandable and constructive feedback to the user (for both automated and hand
crafted proofs).

The three types of proof artefact are now explained in greater detail.

Automated proof Counterpoint’s support for automated proof will be based on plug-
ins that link to external theorem provers. As noted in [LBF+10], there is currently no
VDM-specific theorem prover. Off-the-shelf tools such as HOL [SN08] can however
be used for VDM specifications, as seen in [Ver07,VHL10]. In the future of course, a
VDM-specific theorem prover may be built and could be integrated into Counterpoint
in the same way.

5 It should be noted that industrial use of VDM has done very well using the existing tool
support.

43

Automated proof artifacts in Counterpoint will contain information required to dis-
charge the proof (e.g. version information, tactics used) as well as information produced
by the external prover. Plug-ins should ensure that this feedback to the user is useful,
particularly when an automated proof fails. Counterpoint will support the ability to per-
form a brute force attempt to discharge proof obligations and will automatically attempt
to re-discharge proof obligations when specifications are changed.

On the issue of feedback from external proof tools, the author would recommend
that feedback is mapped back into VDM syntax (as in PROPSER [AS99,DCN+00]),
as opposed to being presented in prover-specific form (as in Vermolen’s work [Ver07]).
This will ensure that the user is not required to learn the syntax of external provers with
which they may not be familiar. This should ensure a smoother, more integrated user ex-
perience, especially if (or hopefully, when) multiple prover plug-ins become available.
Of course, this puts a greater burden on plug-in developers, especially during initial
development or time-limited student projects. Therefore the author suggests a compro-
mise is reached where mature plug-ins with VDM-syntax feedback are included in the
official Overture releases, with experimental or early-development plug-ins available as
optional extras for keen users.

The emphasis on the initial development of Counterpoint will be to provide exten-
sion points for plug-ins (and not on the creation of plug-ins themselves). Extension
points will provide an interface between plug-ins and Counterpoint. This will in theory
give plug-ins a consistent look and feel for feedback and prover configuration (such as
supplying user-defined tactics) and allow plug-ins to access models through the Over-
ture AST (Abstract Syntax Tree). Creation of these plug-ins will be an excellent source
for student projects.

Natural deduction proofs The core of Counterpoint’s natural deduction proof support
will be an editor for crafting proofs. The editor will include automated line numbering
to reduce the tedium of updating evolving proofs and will lay out proofs (including
hypotheses, conclusions and justifications) in an intuitive way. An ASCII syntax will
be defined for the editor, however a more complex file format than plain text may be
needed for proofs (e.g. XML).

Counterpoint will support a number of useful tools based around this core proof
editor. It will include a directory of theorems, initially taken from [BFL+94]. A view
of this directory will be provided that allows users to easily browse and search for the-
orems, e.g. searching theorems by name, listing all theorems relating to sets, or finding
a theorem with a specific conclusion.

In the course of producing proofs, users may create theorems that will be useful
to others. During the Mondex work in VDM for example, much time was spent on
a lemma which stated that the sum of the values in a set of natural numbers yields
a natural number. This could be useful to others in future. To harness this process,
Counterpoint will be linked to an online repository of theorems that will allow the
‘theory base’ [BFL+94] of VDM to expand through shared effort.

Counterpoint will also provide a proof checker, which will use the directory of the-
orems and the specification of the model in order to check the validity of proofs. The
proof checker will check proofs as they are constructed, much like the syntax and type

44

checker of the VDM core of Overture. The proof checker will also be executed auto-
matically if the specification changes.

Counterpoint will also provide pretty-printing support6 through generation of La-
TeX source using the VDM macros (which already support natural deduction proofs).
Generation of a LaTeX sources / PDFs of the entire proof effort of all the proofs of a
project will also be supported.

Finally, Counterpoint will offer the possibility to incorporate user-guided proof sup-
port, much like that the mural tool [JJLM91]. This support could in fact comprise a
reimplementation of the mural engine; or integration of results from research projects
such as AI4FM [GJ10]; or take on new ideas of keen students. Or better yet a combina-
tion of all of the above. The author believes this is a particularly rich vein for research.

Other evidence This category of proof artifact is designed for less formal proofs and
recognizes that not all proofs will necessarily be taken to the fully formal level. These
proofs could range from assertions of correctness based on inspection, through to semi-
formal proofs and structured arguments such as those given in [Pie09]. Some proof
obligations required for consistency are simple or trivial [Ber97]. This mode will sup-
port plain text, LaTeX source (including VDM macros), and PDF and image files (e.g.
JPG, PNG) as proof artifacts. PDF files and images could be used where current proofs
exist in other formats, such as early proofs from scanned manuscripts, for example.

As noted previously, Counterpoint could not automatically check this type of proof,
so a blue colour will mark artifacts that the user asserts to be valid. The tool could
however mark proofs that must be manually checked after the specification in a way
that could affect the validity of those proofs. Because the proofs cannot be checked
by Counterpoint, there is an onus on the user to be correct. Counterpoint will at least
require that some information is provided as a proof artifact, which means that the
user cannot simply dismiss a proof without providing some explanation. This will aid
traceability and confidence in the proof effort.

Figure 1 shows a representation of the components of Counterpoint proposed above.
There are three types of element in the diagram (based on line colour and fill colour).
Shaded (green) elements are already complete, because they are part of the Overture
tool already. The author suggests that initial development phase should be focused on
the white elements with solid outlines, since these are achievable and form a foundation
of the framework. The elements with dashed outlines require this basic framework to
exist and likely require more significant research, therefore the author suggests that they
be tackled in later phases of development.

A mockup of a possible Proof perspective for Overture is given in Figure 2. It shows
a Proof explorer view (top-left) that lists the proof obligations of the current model.
Each proof obligation has two icons, indicating its type (automated or hand-crafted)
and status: red for unproved, green for proved and blue for marked as proved by the
user. In the large editor window (right), a natural deduction proof is being constructed.
In the workbench (bottom), a search of the ‘theory base’ is being performed.

6 As an aside, the author would also be interested in a plug-in for pretty-printing and pretty-
editing of VDM specifications (i.e. Math syntax) from inside the Overture tool.

45

Fig. 1. Overview of proposed components for Counterpoint

3 Aims of the Overture Initiative

Because Counterpoint will be an extension to the Overture tool, the author wishes to
reiterate the core values of the Overture initiative7 (or now perhaps the Overture / Coun-
terpoint initiative):

– to promote and enhance the use of VDM (and formal proof)
– to provide industrial strength tools
– to be open-source
– to be community-driven
– to provide opportunities for research
– to provide opportunities for teaching
– to be a fun project to be involved in!

4 Conclusions and The Way Forward

This position paper presented some ideas for an extension to the Overture tool plat-
form that will support the process of proof in the VDM family of formal languages.

7 http://www.overturetool.org/?q=About

46

Fig. 2. A mockup of a Proof perspective for Overture

Tool-support for the creation, execution and testing of VDM specifications is currently
strong, however tool-support for proof is lacking. The author of the paper hopes that
together we can bring tool support for proof up to the current standard of Overture, to
provide Overture and our users with an even richer set of features for the specification
of systems with VDM.

Since this extension will not simply be a single plug-in, but a whole new perspective
(both literally and figuratively) to the Overture tool, the author has chosen to name this
extension Counterpoint. Counterpoint will provide support for managing proof obliga-
tions; for discharging proofs through external theorem provers; for hand crafting proofs
in the natural deduction style; as well as a number of other features to aid the proof
process.

The author did not consider model checking in this paper, since he sees it as orthog-
onal (though complementary) to proof, and that perhaps it would exist in some future
Model Checking perspective. It would clearly be another excellent string to the Overture
tool’s bow however, so the author would of course welcome contributions on the topic.

The author hopes that this paper will encourage discussion within the Overture and
VDM community. As a next step, the author suggests that the above ideas be formed
into a concrete set of requirements, taking community feedback into account. These
requirements can then be used to prioritize, plan and measure development effort.

47

As a rough plan, the author suggests that the creation of a Proof perspective and
proof obligation manager would be a good first step. Initially, simple proof artifacts (i.e.
LaTeX source, PDF files) will be supported. This will create a platform upon which the
more complex automated and natural deduction proof support can be built. For natural
deduction proofs, basic support will require a definition of a file format and creation of
an editor, which should be a relatively simple step in this direction. Creation of a proof
checker and user-guided proof support will require further research.

For interfacing with automated theorem provers, the key will be to define extension
points that allow plug-ins to interface with Counterpoint and access the necessary model
information through the Overture AST. It will be necessary to think carefully about
how external theorem prover plug-ins will need to interact with the tool and models.
The author suggests that integrating the work of [Ver07,VHL10] into the emerging
Counterpoint framework would be a useful pilot project, from which requirements for
extension points could be generalised.

Acknowledgements

The author wishes to thank his colleagues Jeremy Bryans, Richard Payne, and Zoe
Andrews, who participated in a focus group after the Mondex work at Newcastle. The
author also wishes to thank John Fitzgerald and Cliff Jones for discussions on the topic
of proof tools, as well as the two reviewers who helped improve this paper. The author’s
work is supported by the EU FP7 project DESTECS.

References

[Abr07] Jean-Raymond Abrial. Rodin Tutorial. http://deploy-eprints.ecs.
soton.ac.uk/10/1/tutorials-2007-10-26.pdf (Unpublished), 2007.

[AS99] S. Agerholm and K. Sunesen. Formalizing a Subset of
VDM-SL in HOL. Technical report, IFAD, April 1999.
http://www.vdmportal.org/twiki/pub/Main/VDMpublications/FormailizingVDM-
SL.pdf.

[Ber97] Bernhard K. Aichernig and Peter Gorm Larsen. A Proof Obligation Generator for
VDM-SL. In John S. Fitzgerald, Cliff B. Jones, and Peter Lucas, editors, FME’97:
Industrial Applications and Strengthened Foundations of Formal Methods (Proc. 4th
Intl. Symposium of Formal Methods Europe, Graz, Austria, September 1997), vol-
ume 1313 of Lecture Notes in Computer Science, pages 338–357. Springer-Verlag,
September 1997. ISBN 3-540-63533-5.

[BFL+94] Juan Bicarregui, John Fitzgerald, Peter Lindsay, Richard Moore, and Brian Ritchie.
Proof in VDM: A Practitioner’s Guide. FACIT. Springer-Verlag, 1994. ISBN 3-540-
19813-X.

[DCN+00] Louise A. Dennis, Graham Collins, Michael Norrish, Richard Boulton, Konrad
Slind, Graham Robinson, Mike Gordon, and Tom Melham. The PROSPER Toolkit.
In Proceedings of the 6th International Conference on Tools and Algorithms for the
Construction and Analysis of Systems, Berlin, Germany, March/April 2000. Springer-
Verlag, Lecture Notes in Computer Science volume 1785.

48

[DHB91] Flemming M. Damm, Bo Stig Hansen, and Hans Bruun. On type checking in vdm
and related consistency issues. In Proceedings of the 4th International Symposium of
VDM Europe on Formal Software Development-Volume I: Conference Contributions
- Volume I, VDM ’91, pages 45–62, London, UK, 1991. Springer-Verlag.

[GJ10] Gudmund Grov and Cliff B. Jones. Ai4fm: A new project seeking challenges! In
Rajeev Joshi, Tiziana Margaria, Peter Mueller, David Naumann, and Hongseok Yang,
editors, VSTTE 2010, August 2010.

[JJLM91] C. B. Jones, K. D. Jones, P. A. Lindsay, and R. Moore. mural: A Formal Development
Support System. Springer-Verlag, 1991.

[Jon90] C. B. Jones. Systematic Software Development using VDM. Prentice Hall Interna-
tional, second edition, 1990.

[LBF+10] Peter Gorm Larsen, Nick Battle, Miguel Ferreira, John Fitzgerald, Kenneth Lausdahl,
and Marcel Verhoef. The Overture Initiative – Integrating Tools for VDM. ACM
Software Engineering Notes, 35(1), January 2010.

[LLR+10] Peter Gorm Larsen, Kenneth Lausdahl, Augusto Ribeiro, Sune Wolff, and Nick Bat-
tle. Overture VDM-10 Tool Support: User Guide. Technical Report TR-2010-02, The
Overture Initiative, www.overturetool.org, May 2010.

[Pie09] Ken G. Pierce. Enhancing the Usability of Rely-Guarantee Conditions for Atomicty
Refinement. PhD thesis, Newcastle University, 2009.

[SCW00] Susan Stepney, David Cooper, and Jim Woodcock. An electronic purse: Specification,
refinement, and proof. Technical monograph PRG-126, Oxford University Comput-
ing Laboratory, July 2000.

[Sim90] H.R. Simpson. Four-slot fully asynchronous communication mechanism. Computers
and Digital Techniques, IEE Proceedings -, 137(1):17–30, Jan 1990.

[SN08] Konrad Slind and Michael Norrish. A brief overview of hol4. In Otmane Mohamed,
César Muñoz, and Sofiène Tahar, editors, Theorem Proving in Higher Order Logics,
volume 5170 of Lecture Notes in Computer Science, pages 28–32. Springer Berlin /
Heidelberg, 2008.

[Ver07] S. D. Vermolen. Automatically Discharging VDM Proof Obligations using HOL.
Master’s thesis, Radboud University, Nijmegen, 2007. Draft.

[VHL10] Sander Vermolen, Jozef Hooman, and Peter Gorm Larsen. Automating Consistency
Proofs of VDM++ Models using HOL. In Proceedings of the 25th Symposium On
Applied Computing (SAC 2010), Sierre, Switzerland, March 2010. ACM.

[Woo06] Jim Woodcock. Verified software grand challenge. In FM, pages 617–617, 2006.

49

VDM++ as a Basis of Scalable Agile Formal
Software Development

Hiroshi Mochio1 and Keijiro Araki2

1 Chikushi Jogakuen University, 2-12-1 Ishizaka, Dazaifu-shi, 818-0192 Fukuoka,
Japan mochio@chikushi-u.ac.jp

2 Kyushu University, 744 Motooka Nishi-ku, Fukuoka-shi, 819-0395 Fukuoka, Japan
araki@csce.kyushu-u.ac.jp

Abstract. This paper presents the use of VDM++ formal specifica-
tion language as a basis of scalable agile formal (SAF) software develop-
ment method, which is an agile method for mission-critical or large-scale
software development. Combination of agile method, of which useful-
ness has been recently recognized, and VDM++, a formal method, en-
ables describing system architecture, verifying specification and generat-
ing source code all in an agile and formal way. The system architecture
and the verification are indispensable for SAF software development.

1 Background

It has been about ten years since the Agile Manifesto was declared. [2] During
this period, agile software development method has been more and more adopted
in real industry field and realistic results have been obtained. The significance
of the agile development method is already undoubted today. Agile development
principles, such as iteration based on lean requirements, good communication
among the stakeholders and regularly responding to changes, lead to satisfaction
of developers and customers. Consequently, it brings about high productivity.

The method of lean requirements enables developers to catch an outline of
the iteration that they are working on. Therefore, the developers can easily un-
derstand the whole requirements and always keep their motivations high. Good
communication enables developers to keep products of high quality because they
can recognize a gap between the status of the products and the requirements.
Iteration of a short term development enables developers to cope with changes
of the market and the customer flexibly.

Contrarily, there have been several comments about proper problems of the
agile development method. Lack of ability to develop mission-critical software
and lack of scalability are typical ones.

About the lack of ability for mission-critical software, Kent Beck, who pro-
motes eXtreme Programming (XP), one of the most commonly used agile de-
velopment methods, notes that more than XP may be needed in safety-critical
systems. It means that in such situations additional process measures such as
documented traceability, formal design review by outside experts and the like,
may also be required. [9] In XP, reliability of software is built up by means of test

and review. Since XP is a test-driven development method, at first, tests must
be described before design, and then verification by tests is performed at every
stage in the iteration. Additionally, pair-programming, so to say, a kind of real-
time peer review, is the basic coding style of XP. Therefore, software produced
through XP always has high quality, but more reliable means of verification, for
example, verification by proof, is needed for safety-critical domains. Documen-
tation in agile development is a little peculiar because of the principle that agile
method is based on iteration for lean requirements. In agile iteration, developers
should select the functions to be realized from the ordered list of requirements by
themselves, and implement them. In such situation working software over com-
prehensive documentation (Agile Manifesto) is the most important, and so, no
rigorous document about requirements or specifications exists. This is because
there is a tacit understanding that a developing team can get the iteration into
perspective. However, when high safety is required, specification about safety
must be shared through the whole development process. In other words some
kind of means to describe the specification strictly is needed. On the other hand
it has been pointed out in relation to scalability of agile software development
that in case of a large-scale project, developers cannot get the whole development
process into perspective. Namely agile development method is suitable only for
not so large-scale a project. Kent Beck says as follows.

For the first iteration, pick a set of simple basic stories that you expect
will force you to create the whole architecture. Then narrow your horizon
and implement the stories in the simplest way that can possibly work.
At the end of the exercise you will have your architecture. [1]

This means that if a system is of modest scope such that a small number of
stories and an iteration or two can lay out a reasonable architectural baseline,
then this approach may be very effective, and architecture can emerge quite
nicely in this model. [9] Conversely, if the system is not of modest scope, it may
be difficult to lay out an architectural baseline. It is the point of criticism about
the scalability of the agile method.

Formal method is the generic name for methods to describe and verify a
system based on mathematics, which were originally studied in Europe in the
1970s. Formal methods are usually applied to the upper stage of development
so as to exclude ambiguity or errors of specification by rigorous description and
verification. These days the application cases to industry field are increasing. As
a result, it is found that formal methods are effective in reinforcing safety of a
mission-critical system or reducing regression processes in software development.

There are two major usages of formal methods. One is formal specification
description and another is formal verification. For the former, formal specifica-
tion languages, such as Z, B, VDM and OBJ are used. The typical method of
the latter is model checking, and many kinds of model checking systems, such as
SMV, SPIN and LTSA, are available. Usually the right formal method is applied
to the right place. It is unusual to apply only one formal method to all over the
development process rigidly.

51

Sometimes formal methods are criticized because of cost increase with its
introduction or developers antipathy against it.

The reason of the cost increase is that at least one new process for formal
description or verification must be added to the upper stage of development.
Besides, in the initial introduction process of formal methods, cost of training
developers is necessary. Nevertheless some report says that these costs are offset
by the decrease of regression processes in lower stage of development, which leads
to reduction of the total cost.

The antipathy of developers is more critical than the cost increase. Indeed
many of developers hesitate to make use of formal methods in spite of admitting
the effectiveness of them. In such cases people are likely to regard the difficulty
of formal methods as the reason for the hesitation. However, if analyzed in
detail, it becomes clear that there is another factor of the hesitation. The true
reason developers often reject formal methods is that formal methods are usually
introduced into traditional predictable development process such as the waterfall.
Since the whole detailed specification of a system must be defined in the early
stage of such process, developers are forced to take great pains in upper stage.
The developers do not resist the difficulty of formal methods, but resist the
difficulty to specify such a system as consists of not predictable factors all at
once. [5] If the scope of the target system is modest and the perspective on it is
easy to be detected, actually the difficulty of formal methods does not matter.

Agile method and formal method were originated in respective contexts, and
have been developed separately. They are often taken as conflicting methodolo-
gies. But, the same as the two concepts, agile or formal, are not opposed to each
other, the two methodologies are mutually compatible. Appropriate combination
of them rather results in more efficient and higher quality development method,
because each can get rid of the others problem. [3, 8]

In this paper, VDM++ is introduced as the core of a SAF development
method, which is applicable to mission-critical or large-scale software. First,
requirements for SAF method and those for the core formal method are showed.
Second, after a brief overview of VDM++, it is presented that VDM++ can
work as the core formal method of SAF development. Third, realizability of SAF
method is discussed referring to a case of VDM++ application from industry
and a software development environment with VDM++.

2 Scalable Agile Formal (SAF) Software Development

The requirements for SAF method are roughly divided into those to deal with
mission-critical systems and those to deal with large-scale systems.

The former requirements are satisfied by formal specification description and
verification, which are primary functions of formal methods. Rigorous description
based on mathematics and detailed verification makes it possible to achieve the
required high-level reliability or safety.

The latter are satisfied mainly by these three means. [9]

– Intentional Architecture

52

– Lean Requirements at Scale
– Managing Highly Distributed Teams

Leffingwell explains them as follows.

An intentional architecture typically has two key characteristics: (1) it
is component-based, each component of which can be developed as inde-
pendently as possible and yet conform to a set of purposeful, systemati-
cally defined interfaces; (2) it aligns with the teams core competencies,
physical locations, and distribution. Agile teams should organize around
components, each of which can be defined/built/tested by the team that
is accountable for delivering it. Moreover, because of the existence of a
set of interfaces that define a components behavior, teams can be isolated
from changes in the rest of the system. Sufficient architecture must be
established prior to substantive development. In the first few iterations,
a primary version of architecture is built and tested. The architecture
should be implemented, not just modeled. This process is called archi-
tectural runway. [9]

Requirements that define performance, reliability, and scalability of a
system must be understood by all teams who contribute to the solu-
tion. To this end, requirements, which are naturally lean, should have
three main elements: a vision, a roadmap, and just-in-time elaboration.
The vision carries the common objectives for the teams and serves as a
container for key nonfunctional requirements that must be imposed on
the system as a whole. The roadmap illustrates how that vision is to be
implemented over time in accordance with a prioritized backlog. Just-
in-time requirements elaboration defers specific requirements expression
until the last responsible moment, eliminating the waste and scrap of
overly detailed. [9]

At scale, all agile is distributed development. Tooling is also different for
distributed teams. Larger teams require relatively more tooling, and at
enterprise level, a more systematic approach is required. Enterprise-level
communication environment needs shared, program-wide visibility into
priorities, real-time status and signaling, and dependencies. Teams must
have access to networks and Internet-enabled tools that enable shared
repositories for agile project management, shared requirements, source
code management, a common integrated build environment, change man-
agement, and automated testing. [9]

In addition to the above-mentioned requirements, the core formal method of
SAF development must meet the requirements of ordinary agile method. Since
one of the most important characteristics of agile methods is test-driven devel-
opment based on the principle of working software over comprehensive docu-
mentation, high-quality working software is demanded at every the end of each
iteration. Therefore, ability to describe tests, framework for automated tests,

53

function to animate specification, and an automated code generation tool are
indispensable to the core formal method environment.

Taking all mentioned above into consideration, requirements for the core
formal method for SAF software development are the following.

1. Rigorous description and verification
2. Test-driven development
3. Object-oriented description of architecture
4. Animation of specification
5. Just-in-time requirements elaboration
6. Automated code generation
7. Internet-enabled tool for communication

3 VDM++ as a Basis of SAF Software Development

VDM++ is an object-oriented extension of the formal specification description
language for Vienna Development Method (VDM), which is a formal methodol-
ogy originally developed at the IBM Vienna Laboratory in the 1970s. VDM++
is a product of the Aphrodite project in EU and its original, VDM-SL, was
internationally standardized as ISO/IEC13817-1 in 1996. It can express many
kinds of abstract data types based on mathematical equipment, such as proposi-
tional or predicative logic, set, mapping, and so on. Hence VDM++ can describe
objects in a variety of abstraction levels, from an abstract model like system ar-
chitecture to a concrete component. It rigorously defines functional behaviors of
a system with explicit description of preconditions, postconditions, and invari-
ants. Both implicit and explicit styles are available for definition of a function.
Implicit style definition, which defines what to do without any description of
concrete processing, declares relation between the input and the output as func-
tional specification. It is usually used to describe highly abstract models. On the
other hand, explicit ones, which define how to do the output from the input in
terms of algorithm, can run on an interpreter, and so enables prototyping and
verification by animation.

It is worth mentioning that VDM++, a formal specification language, re-
sembles to ordinary programming languages in description style. The following
is a part of an example in Fitzgerald 2005. [4] It describes the specification of
an operation to return the schedule of experts who are called up by the alarm
system of a chemical plant.

class Plant

...

public ExpertIsOnDuty: Expert ==> set of Period

ExpertIsOnDuty(ex) ==

return {p | p in set dom schedule &

ex in set schedule(p) }

end Plant

54

In Java, it would look something like:

import java.util.*;

class Plant {

Map schedule;

Set ExpertIsOnDuty(Integer ex) {

TreeSet resset = new TreeSet();

Set keys = schedule.keySet();

Iterator iterator = keys.iterator();

while(iterator.hasNext()) {

Object p = iterator.next();

if (((Set)

schedule.get(p)).contains(ex))

resset.add(p);

}

return resset;

}

}

The VDM++ description looks like that of an ordinary programming lan-
guage and is familiar to most programmers. Meanwhile it is, as is characteristic
of formal specification languages, more abstract than the Java description, where
it captured the essentials of the object simply.

Here the VDM++ adaptability to the SAF requirements mentioned above is
considered step by step.

Rigorous description and verification: VDM++ can rigorously define behav-
ior of a system with preconditions, postconditions, and invariants in function
specification. Additionally it can verify the specification by satisfiability check
for implicit definition or integrity check for explicit one. [4]

Test-driven development: VDMUnit is a test framework for VDM++, which
is a transplant from JUnit developed for Java by Kent Beck and Eric Gamma.
Fig. 1 is an overview of VDMUnit framework. [4]

Object-oriented description of architecture: VDM++ can describe system
architecture that defines components and their interfaces of a system in variety
of description styles, from the abstract one for concept models to the concrete
one for detailed specification.

Animation of specification: One of the most important principles of agile
development is constant and close communication with customers. Customers
should usually check the products during iteration, so that tasks of the iteration
will comply with their stories, which are, so to say, requirements of agile style.
Thus moving objects should be demonstrated for the customers to grasp the
development state easily. In VDM++ development environment, specification
described in explicit style can be animated with interpreter.

55

Fig. 1. An overview of VDMUnit test framework

Just-in-time requirements elaboration: VDM++ has an abstract data type,
called token, with which VDM++ describes, without concrete definition, such
objects as is not necessary to the modeling for the moment. Moreover, when
function specification is described in implicit style, no more detailed definition
is needed until concrete specification is demanded.

Automated code generation: There are two major kinds of description envi-
ronments for VDM++, VDMTools of CSK and Overture of the Overture Project.
Each of them has function to generate Java/C++ source code from VDM++
specification.

Internet-enabled tool for communication: Tooling, such as above-mentioned
VDMTools or Overture, must be expanded and enriched.

4 Prospects

While a large-scale development case with VDM++ and support tooling for
VDM++ are presented, realizability of SAF software development is considered.

FeliCa Networks Company developed the firmware of mobile FeliCaIC chip
from 2004 until 2006. They used VDM++ to describe the external specifica-
tion of components, which had about 100,000 lines, while the C++ source code
of the firmware had about 160,000. [6, 7] The whole development was based
on traditional waterfall process, but some kinds of formal methods were partly

56

introduced to improve the process. According to Kurita, there were four ma-
jor purposes in applying formal methods: (1) rigorous specification description
all through the development, (2) achievement of high quality in upper stage of
development through high-precision description and tests, (3) thorough testing
based on specification, and (4) activation of communication within the develop-
ment team and with customers. As a result they had corrected many faults in
the upper stage, and therefore no bug has been detected since the product was
released.

Though the project followed the traditional waterfall development process, it
implies possibility of VDM++ architecture description in SAF development, be-
cause the external specification of the components was described with VDM++.
Besides, the fact that the tests was based on the formal specification with
VDM++ and the fact that VDM++, a formal method, contributed to activation
of communication, both of them are hints of realizability of SAF development
with VDM++.

The Overture project is an open-source project to develop new generation
tooling for VDM. The mission of the Overture project is twofold: (1) to provide
an industrial-strength tool that supports the use of precise abstract models in
any VDM dialect for software development. (2) to foster an environment that
allows researchers and other interested parties to experiment with modifications
and extensions to the tool and different VDM dialects. [10]

Overture is an integrated development environment (IDE) built on top of the
Eclipse platform. The core element of Overture, called VDMJ, consists of parser,
abstract syntax tree, type checker, interpreter with test coverage function, and
integrity examiner. Overture is the integration of VDMJ, editor, file navigator,
debugger, and formatting tool, which can be evolved by expansion plug-ins.

Today, large-scale development is almost inevitably done in distributed cir-
cumstances. Therefore network-enabled powerful IDE is indispensable to SAF
development. Overture is one of the likeliest candidates for such an IDE.

5 Concluding Remarks

With VDM++ and its supporting tool, system architecture can be described,
components can be specified and verified, and the source code can be generated,
consistently. Thus SAF software development, an agile development method for
mission-critical or large-scale systems, is possible with VDM++.

Future works are as follows.
Overture IDE needs to be expanded for scalable agile development. The first

thing to do is to equip online video chat and whiteboard-like system as circum-
stances for real-time communication among all concerned. Secondly test-driven
function should be improved so that tests can be generated and run automat-
ically. Additionally, specification animation with enriched interface is desirable
because such function is useful especially for communication between a devel-
oper and a customer. Then reinforcement of prototyping and code generating
function is needed, for working software is the most important thing in agile

57

development process. Finally a team management tool is necessary for making
development teams correspond to the components defined as elements of system
architecture.

References

1. Beck, K.: Extreme Programming Explained: Embrace Change. Addison-Wesley
(2000)

2. Beck, K., et al.: Manifesto for agile software development. Online: http://www.
agilemanifesto. org/ (2001)

3. Black, S., Boca, P., Bowen, J., Gorman, J., Hinchey, M.: Formal versus agile:
Survival of the fittest? Computer 42(9), 37–45 (2009)

4. Fitzgerald, J., Larsen, P.G., Mukherjee, P., Plat, N., Verhoef, M.: Validated Designs
for Object-oriented Systems. Springer-Verlag London (2005)

5. Fowler, M.: The new methodology. Online: http://www.martinfowler.com/articles
/newMethodology.html (overhauled in 2005) (2000)

6. Kurita, T., Chiba, M., Nakatsugawa, Y.: Application of a formal specification lan-
guage in the development of the Mobile FeliCa IC chip firmware for embedding in
mobile phone. FM 2008: Formal Methods pp. 425–429 (2008)

7. Kurita, T., Nakatsugawa, Y.: The application of VDM++ to the industrial de-
velopment of firmware for a smart card IC chip. Intl. Journal of Software and
Informatics 3(2-3), 323–355 (2009)

8. Larsen, P., Fitzgerald, J., Wolff, S.: Are formal methods ready for agility? A reality
check. FM+AM 2010, 2nd Intl. Workshop on Formal Methods and Agile Methods
pp. 13–25 (2010)

9. Leffingwell, D.: Scaling Software Agility: Best Practices for Large Enterprises. Pear-
son Education, Inc. (2007)

10. Overture-Community: Overture: Formal modelling in VDM. Online:
http://www.overturetool.org/

58

Toward Customizable and Bi-directionally Traceable
Transformation

between VDM++ and Java

Fuyuki Ishikawa1

GRACE Center, National Institute of Informatics,
2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan,

f-ishikawa@nii.ac.jp

Abstract. VDM allows for formalization, verification and validation of software
specifications, typically focusing on only abstract essences of the target system.
Therefore, it is necessary to derive programs from VDM specifications in an ef-
ficient and reliable way, while incorporating details and reflecting implementa-
tion strategies. This paper discusses a method and tool to support this process
through customizable and bi-directionally traceable transformation. Specifically,
transformation rules from VDM++ to Java are specified for explicitly defining
the implementation strategies and customizing the code generation process, e.g.,
introduction of implementation-specific variables. These rules can then be used
for bidirectional transformation between VDM++ specifications and Java code.
Changes at either of the two sides can be reflected to the other side even with
the existence of implementation strategies that essentially lead to gaps between
VDM++ and Java. This paper reports initial attempts that started with definitions
of variables and method signatures, or structure definitions as in class diagrams.

Keywords: VDM, Bidirectional Model Transformation, Code Generation, Trace-
ability

1 Introduction

VDM is a method for formal specification of software systems [5, 6]. Currently, VDM
is said to be lightweight, because the languages and current supporting tools for VDM
can be used in a similar way to those for programs. Specifically, modules or classes
are defined with variables and methods (functions/operations), and typically tested by
using the interpreter [1, 4].

Because structures of the languages for VDM (VDM-SL and VDM++) are simi-
lar to those of common programming languages such as Java, it is somewhat easy to
syntactically map VDM specifications to implementation code, for many common no-
tations often used. Actually it is necessary to do so in an efficient and reliable way, to
reflect what are defined and examined in VDM into implementation code.

On the other hand, abstraction is the key in VDM (or specifications in general) [5,6].
Only abstract essences of the target system are modeled while implementation details
are abstracted away. For example, the languages use abstract data types that do not
mention how they are allocated with the memory space and manipulated. In addition,

developers may choose to use declarative notations or to omit details unnecessary for
the intended analysis of the specification. This way, there are gaps between VDM spec-
ification and implementation code. It is therefore necessary to derive programs from
VDM specifications in an efficient and reliable way, while incorporating details and
reflecting implementation strategies.

Existing VDM tools have not investigated this aspect. For example, code generators
in VDM Toolbox only provide a few options and do not allow for incorporation of im-
plementation strategies [4]. As a result, developers often need to modify the generated
code to reflect the strategies. In addition, in that case it is necessary for developers to
exclude the modified parts to avoid override by code generation and manually manage
the changes. As another example, transformation tools between UML class diagrams
and VDM specifications have been recently focused on [4,11]. However, this leads to a
situation where developers have two class diagrams: one written in VDM vocabularies
with abstraction, and the other written in C++ or Java vocabularies with implementa-
tion details. Although the latter is popularly used in common development processes,
it is not clear how to locate the former when introducing VDM. In order to effectively
leverage VDM in the development process, the essential gaps in such a situation should
be discussed and handled.

In response to the problem discussed above, this paper discusses a method and tool
to manage the gaps between VDM specification and implementation code through cus-
tomizable and bi-directionally traceable transformation. The approach is to use transfor-
mation rules from VDM++ to Java for explicitly defining the implementation strategies
and customizing the code generation process. The rule language allows for local over-
riding so that default rules are defined to generate valid Java code while developers can
add rules to customize the transformation process. In addition, a solid transformation
theory and its implementation are used to provide the basis of bi-directionally traceable
transformation [3, 7]. This allows for reflecting changes at either of the VDM and Java
sides to the other side, even with the existence of the gaps.

Realization of the method and tool requires much effort for coverage of various
syntax elements as well as ideally sophisticated user interface. This paper reports ini-
tial attempts for proof-of-concept implementation, which deal with very basic parts of
VDM++ and Java.

2 Motivation

2.1 Abstraction Gaps between VDM++ and Java

Figure 1 shows a simple example of variable definitions in a VDM++ specification and
its transformation into Java code. Besides the necessary syntax translation, this example
includes the following transformation.

1. The variable a of the real type in VDM++ is implemented as the double type in
Java.

2. The variable b of the real type in VDM++ is implemented as the float type in Java.
3. The variable s of the seq of nat type in VDM++ is implemented as the LinkedList<Integer>

type in Java.

60

instance variables
private a : real;
private b : real;
private s : seq of nat;
private state : State;

-- only in model
end TestClass

private double a;
private float b;
private int x;
private LinkedList<Integer> s;
private Logger log;

// only in impl
}

Fig. 1. Transformation Example

4. The variable state is unnecessary in the implementation code. This situation hap-
pens, for example, when a variable is necessary only to define invariants, or to
define a mock to let the model run (replaced by libraries in the implementation
code).

5. The variable log is necessary only in the implementation code. This situation hap-
pens, for example, when details unnecessary for the targeted analysis or value-
added functionality such as logging are abstracted away in VDM++.

The transformations #1, #2 and #3 illustrate how abstract types are converted to
concrete types that define how to allocate data with the memory space and manipu-
late. Among them, #1 and #2 illustrate customization (definition of different conver-
sion for the same type). The transformations #4 and #5 illustrate model-specific or
implementation-specific variables that exist at only one side of VDM++ and Java. Al-
though the example only includes variable definitions, equivalent discussion stands also
for method definitions.

This way, VDM, or early (formal) modeling methods in general, essentially leads
to abstraction gaps. Specifically, to clarify the links between abstract model and the
implementation, it is necessary to explicitly distinguish and manage different aspects
included or excluded in the abstract model.

– What aspects in formal specification (VDM) are essential decisions, inherited to
the implementation (Java code)
• Inherited as they are (with syntax translation)
• Inherited as with additional decisions (e.g., how to allocate and manipulate data

on memory)
– What aspects in formal specification (VDM) are tentative and unnecessary in im-

plementation (e.g., assertions, tentative mock to let it run without concrete imple-
mentation)

– What additional aspects are introduced only into the implementation (e.g., loggers)

This paper focuses on these gaps between VDM++ and Java. The gaps essentially
come from the fact generally design decisions or implementation strategies are made
and introduced when deriving implementation code from specifications. The approach
in this paper thus does not consider VDM-to-Java ”translation” but ”transformation”
(not generating code with equivalent structures and behaviors).

61

2.2 Expected Usage of VDM

VDM does not define one specific usage on how to incorporate it into the development
process. This paper focuses on usages to rigorously model and validate design, used as
input to implementation teams (rather than to model early requirements only for under-
standing the domains and problems there). VDM is suitable for the usages, compared
with other methods for abstract and formal modeling, as its languages include more
concrete and design-aware syntax such as object-orientation.

As illustrated in the example in Section 2.1, each class is modeled with some ab-
straction, but the basic class structures are discussed defined concretely. With this ex-
pectation, this paper does not consider integrating variables and methods from multi-
ple VDM++ classes to one Java class, or decomposing variables and methods in one
VDM++ class into multiple Java classes. The latter is especially useful to gradually in-
troduce complexity, but is covered with other methods such as Event-B [2] or similar
refinement methods for VDM [10].

2.3 Goal Setting

For the usages to be cost-effective and attractive, it is necessary to reflect what are
modeled and validated in VDM into the implementation, in an efficient and reliable
way. This paper proposes an approach to explicitly describe the gaps between the formal
specification and the implementation as transformation rules. Below describes the goals
this approach is intended to achieve, as well as detailed approaches given characteristics
of VDM and the expected usages.

First, customized code generation is supported. In the approach, developers can
customize the code generation to incorporate their own abstraction strategies or imple-
mentation strategies by specifying transformation rules. Assuming similar structures
in the formal specification and in the implementation, the transformation rules denote
strategies such as making data type concrete. The rules themselves just denote syntax
transformation to accept wide range of customization, e.g., use of database connectivity
and comment insertion. On the other hand, it is costly and often unnecessary to specify
all the transformation rules. Therefore default rules are provided, and the proposed lan-
guage for transformation rules allows for customization through overriding the defaults.
This approach also facilitates to leverage hierarchical definition and reuse of rule sets,
e.g., to reflect common implementation strategies in the domain, to generate comments
in specific styles required in the team, or to generate annotations for further processing
and analysis.

Second, verification through common test cases is supported. As VDM itself, if
referred to as a lightweight method, does not define a specific formal way to obtain
concrete code that satisfies what are validated in the specification. The approach in
this paper does not consider to formally obtain code, either, as it allows for very wide
range of syntax transformation. This point is different from fully formal methods that
consider stepwise refinements where each refinement step is semantically (mathemati-
cally) describable and provable. Although stepwise refinements would be possible also
in VDM, current tools do not support and there will be limitations when dealing with

62

object-orientation in VDM++. Instead, test cases used for checking the VDM specifi-
cation should be used for checking the implementation code. To support this test case
inheritance, it is possible to automatically generate test code for the VDM specifica-
tion and the implementation from one configuration, by understanding the abstraction
gaps explicitly specified within the transformation rules. This aspect was discussed in
the author’s previous paper [8] and is omitted in this paper (though trivial changes are
necessary).

Finally, traceability between formal specification and its implementation is sup-
ported. Transformation rules explicitly keep the relationships between the VDM speci-
fication and the implementation code, or how the latter is derived from the former. The
relationships are essential to understand and make modifications in an existing set of
specification and implementation. This paper constructs the transformation rules on the
basis of a solid underpinning for bidirectional graph transformation. It allows for track-
ing what part in the VDM specification correspond to what part in the implementation
code. In addition, it also allows for automatically reflecting changes in the implemen-
tation code to the VDM specification. Specifically, given the limitations of the current
code generator, discussed in Section 2.1, this paper aims at supporting the following
properties,

1. Suppose Java code J is generated from VDM++ specification V , and J is modi-
fied into J ′ only by introducing implementation-specific elements. Generation of
VDM++ specification from J ′ then leads to V . The same holds for the case where
J ′ = J .

2. Suppose Java code J is generated from VDM++ specification V , and V is modified
into V ′ only by introducing model-specific elements. Generation of Java code from
V ′ then leads to J .

3. Suppose Java code J is generated from VDM++ specification V , J is modified
into J ′, and VDM++ specification V ′ is generated from J ′. Generation of Java
code from V ′ then lead to J ′.

The current scope of this paper is to investigate benefits and limitations of the pro-
posed framework when the transformation rules are explicitly given by developers. Fur-
ther challenges are discussed as future work, i.e., to deal with vagueness that appears
when explicit knowledge is not given by developers.

2.4 Expected Features

Figure 2.4 illustrates expected features and usages of the proposed framework. As in
common usages of VDM, formal specification models are built in the VDM++ lan-
guage with some abstraction strategies. Class diagrams can be used to first clarify the
structural aspects (variables and method signatures) of the design before the rigorous
specification in VDM++. Behavioral aspects can also be modeled too, in an abstract but
executable way. The VDM++ specification is analyzed through type check, review and
other techniques as well as check with given test cases. These tasks can be supported
by existing tools, i.e., VDM++ editor, interpreter, debugger and test frameworks as well
as UML editor and UML-VDM translators.

63

Fig. 2. Expected Usages of Proposed Framework

Transformation rules are then specified, defining differences to be introduced be-
tween the VDM specification and the Java code, besides the syntax differences. Java
code are then generated using the rules. The transformation procedure internally pro-
cesses parse trees of the VDM specification and the Java code. Transformation itself
can be done with Abstract Syntax Trees (ASTs), but locations of syntax elements in
texts are also kept for implementing visual support for traceability. This paper uses the
term ”parse tree” instead of common ”AST”. In addition to transformation of the VDM
specification (of the target system), the VDM test specification can be also transformed
into Java test code, by using the transformation rules. Thus common test cases can be
checked both for the VDM specification and the Java code.

When modifications are made in the VDM specification, Java code are generated
again. Depending on contents of the modifications, transformation rules may be changed
as well. It is possible to extract what parts of the VDM specification are affected by
each rule, to help understand whether each rule is affected by the modifications or not.
When modifications are made in the Java code, basically they can be reflected back to
the VDM specification by using the logs kept in the previous transformation (VDM++
to Java). However, completeness of this functionality depends on the user interface to
manage changes at the Java code, which is out of the scope of this paper.

Features involved in the above description may be used in different ways. For ex-
ample, developers may choose to only rigorously model and validate the interface, and
use generated Java code as skeleton. Developers may define rules incrementally and
iteratively, to check the result of transformation, find points to customize by additional
rules, and run transformation again.

This way, the framework provides support for connecting various deliverables in the
VDM++ (or abstract modeling) world and ones in the Java (or implementation) world.

64

3 Overview of Approach

3.1 Transformation Rules

Transformation rules specify how to syntactically transform specific parts of a VDM++
specification into Java code. First of all, pure syntax translation, without introducing
any implementation decisions, is at the base of transformation. Suppose VDM++ spec-
ification includes the following variable definition.

private x : real;

This fragment is translated into the following Java fragment.

private real x;

Syntax differences (the order and the delimiter in this case) are handled, without
any transformation rules.

The above example is only for illustration, as real is not a valid Java type. There is
no really equivalent type in Java, as real in VDM++ refers to a mathematical notion and
does not define any specific format put on the memory 1. Therefore a transformation
rule is mandatory in this case to declare how the real type is implemented in Java, as
double, as float or possibly as a user-defined class.

Suppose double is chosen to implement all the references to the real type. The
following rule indicates this decision.

type-implement: real by double

This rule changes the transformation result as follows.

private double x;

The first part (type-implement in the rule denotes a pattern of implementation de-
cisions. Default rules are defined so that valid Java code can be obtained even if de-
velopers define no rule. The current framework follows an existing code generator, and
choose double as the default for real. It is actually unnecessary for developers to specify
the above rule by themselves.

Suppose only for the variable x, exceptionally the float type is used. Another rule,
reflecting an implementation decision, is then added by developers. This rule clarifies
to which part the rule is applied, and locally overrides the above rule.

class: TestClass{
type-implement: real by float in variable x

}

This way, the language for transformation rules allows developers to customize code
generation behaviors when the default is not acceptable. The remainder of this section
describes patterns embedded in the rule language, which are extracted from existing
literatures on VDM, primarily books [5, 6].

Other rules include introduction or removal of a new variable, a new argument of a
method, a new method, and a sentence inserted within the behavioral description of a
method.

1 VDM tools, especially interpreters may define specific formats to implement the real type

65

3.2 Foundations in Transformation

A theory for bidirectional graph transformation is applied to process the transformation
rules [7]. It defines a set of graph transformation functions and their semantics so that
changes in the result graph can be reflected to the source graph in a well-behaved way
(in a certain sense).

Graph transformation can be defined by using the languages UnCAL or UnQL+.
UnQL+ provides a high-level notation for four types of manipulation, select, replace,
delete and extend. On the other hand, UnCAL is a foundational algebra with full ex-
pressivity, working as the background of UnQL+. In this paper, the high-level language
UnQL+ is sufficient to illustrate the essences, though implementation of the proposed
framework may also use UnCAL for detailed control of transformation.

UnQL+ allows for definition of transformation as a query, similar to a SQL query,
extracting specific parts from the source graph and constructing a graph possibly adding
new parts. For example, below reviews the rule in Section 3.1, that implements the real
type by double.

type-implement: real by double

This rule is converted to UnQL+ queries including the following one, which re-
places the term real in the type declaration in each variable definition.

replace
varblock.vardef.vartype -> $a
by {double:{}}
in $db
where {real:{}} in $a

Figure 3.2 illustrates an expected VDM++ syntax tree and how this query works.
The first line denotes the type of query: replace some parts of the source graph with a
given graph. The second and fifth lines define subtrees to be replaced. The second line
refers to child subgraphs of a node reached by tracing the path varblock.vardef.vartype
from the root. The fifth line defines conditions to declare each of the extracted subgraphs
is replaced only if it contains a leaf node with the label real. The third line defines each
of the subgraphs is replaced with a leaf node with the label double. The fourth line just
refers to the source graph as the input to the processor ($db).

The above query is one of the queries generated from the transformation rule to
implement real by double. For example, another rule is necessary to use Double inside
the complex type (e.g, HashSet<Double>). This rule is converted to a similar query,
but a regular expression are used for the path description to match occurrences of real
nested in complex types.

A result graph of a query can be an input to another query. UnQL+ ensures compos-
ablity, i.e., it is possible to define a complex transformation by defining and applying
small transformations one by one. In the proposed framework, each transformation rule
is converted to one or a few queries in UnQL+, and then processed in order. When a
query is composed from multiple rules, specific rules are evaluated before default rules.
In the example described in Section 3.1, first the specific occurrence of the label real are
replaced with float, and then remaining occurrences of real are replaced with double.

66

Fig. 3. Manipulation on Syntax Tree

The other types of queries are also available, selecting or deleting designated sub-
graphs as well as extending (inserting) a graph to be a child of the designated path.
With these types of UnQL+ queries, the transformation rules can be implemented on
the basis of a solid graph transformation theory, though further examples are omitted.

3.3 Understanding and Tracing

The underlying theory and tool make logs about from which node in the VDM++ syntax
tree each node in the Java syntax tree is derived from (see [7] for details). This allows
for extracting correspondences between VDM++ fragments and Java fragments. When
VDM++ fragments are removed by transformation rules, there is no corresponding Java
fragments. The same stands for the case when Java fragments are inserted.

As a UnQL+ query includes description of target subgraphs to be replaced, deleted
or extended, it is possible to construct a select query to extract the subgraphs. Thus it
is possible to identify VDM++ fragments that are replaced or removed by each trans-
formation rule. In addition, it is possible to identify Java fragments that are inserted by
each transformation rule by identifying and logging nodes newly introduced by each
rule application.

With these mechanisms, it is possible to identify correspondences among VDM++
fragments, Java fragments and transformation rules.

3.4 Reflecting Changes Backward

This paper discusses what support is feasible when the Java program is modified, and
then the changes are reflected back to the VDM++ specification.

67

When a syntax element is replaced, added or removed in the Java program, it can
mean either an implementation-specific decision or an essential change that should be
reflected to the VDM++ specification. Therefore it is necessary for supporting tools to
ask developers to make some input to identify the intention.

When a modification in the Java program means an additional implementation-
specific decision, a transformation rule should be defined accordingly (e.g., changing
the way a concrete type is implemented, removing or introducing a variable or method).
The rule is necessary to keep the modification even if a Java program is regenerated
from the VDM++ specification (possibly with further modification). Thus this case can
be dealt with the presented framework. Practically, automatically deriving a rule from
the edited Java program would be attractive and feasible, rather than explicitly inputing
the rule, but it is out of the scope of this paper and will be discussed as future work.

When a modification in the Java program means an essential change, it depends on
the kind of the modification how it should be reflected to the VDM++ specification.
Below discusses this point.

Suppose an element that equally exists in both VDM++ and Java is replaced. An
example of this case is renaming of a variable or method, which requires the same re-
naming in the VDM++ specification (note that any transformation rule does not change
a name of a variable or method). In this case, it is possible to reflect the change in the
Java syntax tree back to the VDM++ syntax tree. The underlying transformation theory
originally supports this kind of backward transformation, though the tracing mecha-
nism presented in Section 3.3 can do as well. On the other hand, it is necessary for the
user interface to understand the renaming change occurred. This will be realized, for
example, by forcing developers to use a provided command for renaming (common in
Eclipse-based editors), or by detecting text edit by the developer. The same discussion
stands for removing an element that equally exists in both VDM++ and Java.

On the other hand, careful consideration is required for reflection of insertion in the
Java program to the VDM++ specification. Generally in the underlying transformation
theory, there can be multiple source graphs (VDM++ parse trees) that are transformed
into the identical target graph (Java parse tree). In the case of insertion, logs kept in the
previous forward transformation do not provide any information for identifying how
a unique source graph is chosen among the possible ones, specifically for the inserted
nodes at the target graph. This general discussion also stands for the transformation
rules proposed in this paper. For example, a new int variable in Java may be reflected
back as a new int variable in VDM++, but there is no reason to exclude the possibility to
have a new nat variable in VDM++. Use of custom rules makes it difficult to deal with
this problem. Because of this essential difficulty, currently insertion is recommended to
be made in the VDM++ specification, though accumulation of practical use will lead to
definition of default unique inverse transformation rules for insertion.

4 Prototype Implementation of GUI-based Tool

This section describes a prototype implementation of GUI-based tool for the frame-
work.

68

Fig. 4. Screenshot of GUI-based Tool

The tool internally uses the implementation of the transformation theory with UnQL+/UnCAL,
called GRoundTram [3]. GRoundTram provides the functionalities for transformation
from a VDM++ syntax tree to a Java one, leaving traces for understanding from which
VDM++ syntax elements each Java syntax element is derived. GRoundTram also pro-
vides the functionalities for backward transformation using the logs in the forward
transformation, involving change detection in the Java syntax tree.

The tool implements the features described in Section 3, which are integrated with
the features of GRoundTram. The features include conversion of transformation rules
into UnQL+ queries as well as construction of select queries to identify the VDM++
fragments to which each rule affect.

Currently, the primary feature in terms of the user interface is a three-window in-
terface to help understand and trace relationships between VDM++ specification, trans-
formation rules and Java code (Figure 4). When a text fragment is selected in one of the
three texts (i.e., VDM++, Java, and transformation rules), highlight related text frag-
ments in the other two texts. For example, when some text fragment is selected in the
VDM++ specification, then transformation rules are highlighted that make changes on
the fragment. At the same time, Java code that correspond to the VDM++ fragments
are also highlighted. This user interface can be implemented with the mechanisms de-
scribed in Section 3.3.

The current implementation is based on partial syntax definitions of VDM++ and
Java. Future work for practical use includes full coverage of the syntax or integration
with existing parsers.

69

5 Concluding Remarks

This paper has discusses a method and tool to support the process to derive implemen-
tation from VDM specification, in an efficient and reliable way, through customizable
and bi-directionally traceable transformation.

The approach allows developers to choose any point between two extremes: fully
automatic code generation without customizability and fully manual coding. Examples
include cases where only some classes are implemented to accept concurrent access,
and cases where a platform-specific library is used to replace a few mock classes in
VDM++. On the other hand, the approach is also suitable for iterated and derivative
development where both of the specification and the implementation need to be updated
consistently. The transformation rules work as explicit documentation of relationships
between the specification and the code, which is essential especially when responsible
developers change.

Future work includes enhancement of practical implementation, such as coverage
of default transformation rules, dedicated user interface and evaluation with large spec-
ifications and various implementation strategies (e.g., using databases). Future work
also includes semantical support on the top of the current syntactical layer, in order to
ensure transformation results are valid, at least with the default rules and preferably
certain types of custom rules by developers. However the author believes the approach
presented in this paper provides a solid foundation for traceability between formal spec-
ification in VDM and its implementation with programming languages.

Acknowledgments

The author would like to thank participants in Top SE [9], an education program for the
industry, for questions and opinions on the problem discussed in this paper. The author
would like to thank for the BiG project [3] team for quick support in the GRoundTram
tool as well as Florian Wagner for his help on implementation of the prototype.

References

1. Overture - Open-source Tools for Formal Modelling. http://www.overturetool.
org/

2. RODIN - rigorous open development environment for complex systems. http://rodin.
cs.ncl.ac.uk/

3. The BiG Project. http://www.biglab.org/
4. VDM information web site. http://www.vdmtools.jp/
5. Fitzgerald, J., Larsen, P.G.: Modelling Systems: Practical Tools and Techniques in Software

Development. Cambridge University Press (1998)
6. Fitzgerald, J., Larsen, P.G., Mukherjee, P., Plat, N., Verhoef, M.: Validated Designs For

Object-oriented Systems. Springer (2005)
7. Hidaka, S., Hu, Z., Inaba, K., Kato, H., Nakano, K., Matsuda, K.: Bidirectionalizing graph

transformations. In: The 15th ACM SIGPLAN International Conference on Functional Pro-
gramming (ICFP 2010) (September 2010)

70

8. Ishikawa, F., Murakami, Y.: Challenges in inheriting test cases configurations from vdm to
implementation. In: The 7th VDM-Overture Workshop (2009)

9. Ishikawa, F., Taguchi, K., Yoshioka, N., Honiden, S.: What Top-Level Software Engineers
Tackles after Learning Formal Methods - Experiences from the Top SE Project. In: The
2nd International FME Conference on Teaching Formal Methods (TFM 2009). pp. 57–71
(November 2009)

10. Kawamata, Y., Sommer, C., Ishikawa, F., Honiden, S.: Specifying and checking refinement
relationships in vdm++. In: The 7th IEEE International Conference on Software Engineering
and Formal Methods (SEFM 2009) (2009)

11. Lausdahl, K., Lintrup, H.K., Larsen, P.G.: Connecting UML and VDM++ with open tool
support. In: The 16th International Symposium on Formal Methods (FM 2009). pp. 563–578
(2009)

71

Utilizing VDM Models in Process Management Tool
Development: an Industrial Case

Claus Ballegård Nielsen

Aarhus School of Engineering, Denmark, clausbn@iha.dk

Abstract. Around the world companies are striving to become more effective
and productive by improving their processes and workflows, within their organi-
sation. Software tools exist, which aid and support process management and im-
provement methods. These tools are complex and difficult to build because they
must ensure the integrity and consistency of the processes, while still being acces-
sible, comprehensible and easy to use. This paper presents the work effort and the
initial results of an academia-industry collaborative research project, which takes
its foundation in the further development of an existing software suite, from a
company developing advanced process management tools. An executable formal
model has been created, via the Vienna Development Method (VDM), in order
to analyse both the existing tool as well as an expansion, aimed at making the
process management tools much more dynamic. The formal model was used to;
(1) assist in the exploration of the system domain, (2) to aid the communication
leading to more informed design decisions, and (3) to establish insight into com-
plex dependency relations while still ensuring the consistency of the processes.
The project involved a development scenario where the industry partner had no
knowledge of formal modelling, and the academic partner had nearly no domain
knowledge of the business field, therefore graphical representations have been
linked to the model to aid the communication between stakeholders.

1 Introduction

In the ever-expanding commercial business market there is a constant push towards
maximizing throughput and minimizing costs and development time in order to become
more competitive, and preferably improve customer quality in the process. A key factor
is increased efficiency, which can be accomplished by improving the processes and
workflows within an organization. Software tools exist which are aimed at aiding and
supporting process management and process improvement methods. The key focus of
these tools is on establishing, maintaining and presenting process descriptions in an
effective manner while still ensuring the integrity and consistency of the entire process.

This paper presents the work-effort and experiences gained through a research project
which seeks to improve organization processes through the use of advanced tool sup-
port. The tool focuses on the knowledge that the end users of the process descriptions
have and on the integration of concrete project data directly into the process.

These tools are complex and their inner behaviour is difficult to grasp, because they
consist of many different data types which have a high number of relations in cyclic
patterns, and there are imperative demands for versioning and traceability.

An existing tool, supplied by the industry partner Callis1, is used as the baseline on
to which the research effort is applied and a tool extension is to be developed. To clarify
the complexities found in these tools and comprehend the effects on the tool that the in-
tended extension will have, formal modelling has been utilized in the project. A formal
model is used to analyse and describe the tool; as opposed to describing the business
process descriptions themselves. The use of formal techniques for analyzing and vali-
dating software specifications and designs has been widely encouraged and extensively
researched [5,15]. An executable model containing the key elements of the process
management tool and the intended extension has been created, using the Vienna Devel-
opment Method (VDM) [4,10,9]. By having an executable model the unclear parts and
areas of concern can be analysed in a lightweight manner by modelling the functional
behaviour, thereby adding more precision and confidence to the development process.
VDM has been utilized in a wide variety of areas in the specification of software sys-
tems [3,13,14,2], however this is the first time VDM has been applied to a process
management tool.

It has been anticipated that one of most important effects of having a formal model
will be an increase in the quality of information exchange and communication between
the project partners. This is especially important in the given project, because it consists
of an industry partner with no knowledge of formal modelling, and an academic partner
with nearly no domain knowledge of the business field.

Formal modelling has been used in numerous process management and modelling
approaches [7]. Mishra et al [12] use the formal specification language CSP-CASL to
integrate product and process quality. The applicability of formal specifications for real-
izing the objectives of process areas in CMMI is investigated, with the aim of contribut-
ing to the prospect of automation in process compliance. Van der Aalst [1] discusses
the use of Petri nets for optimizing and supporting business processes in the context
of workflow management. The graphical language and formally defined semantics of
Petri nets ensures a clear and precise definition, that allows for the use of Petri nets as a
design language for the specification of complex workflows. Despite the use of formal
methods in these approaches in relation to processes, they are not directly related to
the use of formal methods in this project. Most of the existing literature on the subject
focuses on the formal method itself as a tool for describing and verifying the processes
and not on specifying a software tool for supporting the process.

The remainder of this paper is set out as follows. Initially, Section 2 presents the
notion of process improvement in the context of this paper. An outline of the research
project is given in Section 3, while Section 4 supplies an overview of Callis’ tool suite,
in relation to which the work is performed. Section 5 contains the reasoning and ex-
pectations of using formal modelling as well as an outline of the performed work. The
results and experience obtained are presented in Section 6, followed by concluding re-
marks in Section 7.

1 Callis http://www.callis.dk/

73

2 Process Improvement

In the context of this paper a process is a well-established chain of procedures or sub-
tasks which are to be performed to handle a certain task or operation. Companies and
organizations use processes and process descriptions to aid the business in resolving
tasks and fulfilling certain business objectives, through the means of a unified, struc-
tured and optimized workflow. Organizations are always searching for ways of improv-
ing their performance, and a well-established approach is to optimize the organizations
existing processes, through process improvement.

In supporting the efforts in process improvement, key mechanisms include process
methods, process standards and process management tools [6]. These tools aid organi-
zations in defining and modelling their processes as well as publishing, broadening and
maintaining existing business processes.

To the customers of Callis, the main responsibilities and goals required by these tools
are:

Definition Aiding in the establishment and maintenance of the business process de-
scriptions, as well as enabling interrelations between the organizations custom pro-
cesses and standardized process descriptions such as ISO90012, Prince23 and CMMI4.

Control Controlling the process description with regards to configuration, versioning
and progress, in order to ensure traceability, evidence, integrity and metrics.

Communication Communicating the process to the users in an efficient, consistent
and easy way, to promote and encourage the use of the process descriptions.

The establishment and management of a process generally involves multiple levels,
which each have a role in relation to requirements and expectations of the process.

The overall process is defined and specified at a high level, which is detached from
the individual projects which are actually the future users of the process, normally by
management and process improvement agents. Subsequently the process description is
passed down the chain in an organization and may be affected by process agents and
managers at national, regional and divisional levels before finally reaching the project
level. These levels entail that data in the process management tool may be affected at
various levels, meaning that the tool must manage multiple versions, releases and users
being related to data.

3 The Research Project

The research project is aimed at improving organizations business processes through
the use of advanced tool support. The tool is to be improved by partly focusing on the
knowledge and hands-on experience that the end-users of the processes descriptions

2 ISO9001 http://www.iso.org/iso/catalogue_detail?csnumber=21823
3 Prince2 http://www.ogc.gov.uk/methods_prince_2.asp
4 CMMI http://www.sei.cmu.edu/cmmi/

(Accessed: May, 2011)

74

possesses, and partly by integrating concrete project data and artefacts directly into the
process descriptions.

The first aspect of the project is to create an extension of the existing tool which
supports and strengthens the end user’s ability to interact with the tool, such that it can
be used actively for establishing workflow overviews and concrete observations about
process descriptions. Currently the process management tool is of a static natured, ex-
pect for a minor corner of the tool. Static means that the process descriptions are fixed
and inactive, they appear as read-only descriptions of how a process should work. In
one perspective this is essentially a desired behaviour which is required from a process
manager and auditor standpoint. For reasons of traceability and appraisals the process
description should be carved in stone at a specific version. However in another per-
spective this presents a challenge, given that the end-users who are actually using the
process have no way of interacting with the tool. The knowledge of these end-users is
extremely valuable to process improvement efforts because of their in-depth experience
with the use of the processes, combined with their proficiencies and expertise in their
field. This gives them the capability to identify both irregularities and ambiguities in a
process description and to pinpoint elements of the process workflow that can be opti-
mized.
Having inflexible and static processes creates a very rigid chain through which this in-
formation needs to pass before it gets worked into the projects process description. This
has the consequence that feedback on the process description is lost, which eventually
results in process improvement initiatives never occurring. Therefore the future is to
expand the tool from being a tool for statically describing processes, into to a dynamic
tool which allows for end-user involvement in improvements of processes and dynamic
adjustments of a process. This will allow the end-user to become an active part in both
the use and future-development of the process. The idea is to move the capabilities of
making adjustments to a process, out to the projects and out to the people who are
actually using the process. This is achieved by adding tailorings to the process descrip-
tion. A tailoring is the procedure of making minor changes, which has a limited project
scope, to existing process descriptions through simple text descriptions. Through tailor-
ings adjustments and comments to the process can then be looped back in to the general
process or be used as optional examples or best practices tailoring set (a managed col-
lection of tailorings) that can be added to other projects.
The second aspect of the tool’s future is to supply an overview of the project progress
based on the defined process and the artefacts specified in the process, with relation
to a specific project. By probing the data in the actual files related to the artefact, the
status can be read back into the tool and displayed in relation to the process in order
to supply an overview of a projects progress. To enable the probing of project artefacts
the tool needs to interface with various types of versioning document handling systems
and document types. The goal is to create a full loop leading from process modelling
and definition, through process usage, to process feedback, and back to including the
feedback in the process modelling to complete the loop.

75

4 The Industrial Case - A Process Management Tool

The process management and modelling tool which is used as case in the project, is an
industrial solution which is used by CMMI5 certified companies. The tool has support
for the modelling and management of the process architecture, process integrity, and
statistics.

The process descriptions are constructed by using a predefined set of standard de-
scription elements, into which organization specific data can be entered. The processes
are defined by creating a structure of relationships between the description elements. In
order to ensure the integrity of the process and to conform to process standards there
are a large number of restrictions and rules as to how the description elements can be
interrelated. There are a large number of different element and subelement types, which
each have different properties; some types can reference themselves, some cannot, some
types can reference other types but cannot be referenced by these types, some can only
relate to certain types and some can only be referenced by certain types, and some types
can only be used for grouping other types. This is illustrated in Fig. 1, which shows an
abstract view of the elements in the tool. On the figure some of these relationships can
be seen, for example DescriptionElementA is capable of referencing itself, Descrip-
tionElementB can reference all subelement types and DescriptionElementC can refer-
ence all other types of DescriptionElements but only reference one type of subelement.
To complicate things further each element can have multiple versions and processes
can have multiple instances. This high number of relations, cyclic references, require-
ments and restrictions lead to a complex tool which is difficult to comprehend and get
an overview of.

Fig. 1. Abstract class diagram of relations between elements.

76

5 Use of Formal Modelling in the Project

In order to manage and analyse the complexities of the existing tool and explore the pos-
sible solutions in extending the tool, in relation to the research aim, formal modelling
has been used from the start of the project. The focus of the modelling has been on
abstraction, understanding and communication and not on code verification. The model
was developed by one person over a period of two months, with a weekly meeting be-
tween the project partners. The final model consisted of approximately 2500 lines of
code distributed across 16 classes.

The creation of the model enabled the construction of different scenarios, through
which the structures and relations of the elements in a process could be defined. This
part of the model reflects the functionality of the existing tool and had three purposes:

– to gain insight into the existing tool and to better comprehend the methodology
used in business process descriptions,

– to check the consistency of the existing tool and attempt to reveal unidentified prob-
lems,

– and to enable the modelling of the intended extension of the tool, in order to analyse
the effects of incorporating the research goal in the existing tool implementation.

5.1 Exploration of the Domain and the Existing Tool

An executable model for a subset of the existing tool has been created in VDM++,
with a focus on the structures used in the tool and the relationship between the process
elements. Prior to starting the modeling, a smaller process was described using the tool,
with the purpose of getting acquainted with both the methodology of business processes
and to the concept and features of the tool. The existing source code of the tool was
not used during the modeling, however the use of the tool and the central principles of
process descriptions were discussed during weekly meetings with a process expert from
Callis.

The ways in which the different element types can be combined, as mentioned in
Section 4, are strictly controlled by the tool. As a process is built, it is type checked
against an internal model of the allowed relationships between element types. Conse-
quently the large matrix of constraints on references which exists between the different
types was not included in the modelled subset. Instead the focus was on certain potential
issues such as the risk of non-terminating recursion and on the structures which were
relevant for the extension.

The classes were structured in a hierarchy which reflects the structure of the tool,
but with a more abstract representation of the element types, as depicted in the class
diagram in Fig. 2. This class hierarchy enabled the modelling of key elements of both
the existing and future tool, and fairly elaborate processes could be defined through the
use of the model. In the class diagram it can be seen that the element type is capable of
referencing itself and other elements of the same type, thus enabling recursion.

The ProcessDecorator and GuidanceDecorator classes are part of the Decorator
pattern [8] and are used to model future aspects of the tool’s future. The GuidanceDec-
orator is used to add tailorings to elements at the lowest level of the tool hierarchy. The

77

Fig. 2. Class diagram of the models class hierarchy for describing processes

use of the decorator allows for tailoring to be added multiple times to the same element,
without directly changing the existing element; this is in accordance with the intended
functionality of the future tool.

With regards to tailoring of the process, a tailoring is actually detached from process
versions in the future tool. Here the ProcessDecorator can be used for altering a process
at the top most level, by removing existing elements or by adding new. This was used
for creating new versions of an existing process, in order to examine how tailoring were
to be handled between different versions the process; for instance what happens to a
tailoring that has a relation to a process element, which is then removed in a newer
version of the process.

The model allows for different scenarios to be defined and run in order to study di-
verse process constructs, both in relation to complexity and size. Instances of the class
structure in Fig. 2 can be created in a scenario, such that different object structures can
be characterized. The capability of running different scenarios is implemented through
the use of the Strategy pattern [8], were each concrete strategy represents a scenario.
The use of the strategy pattern allowed the scenario to be selected at runtime by chang-
ing a configuration file, thus allowing for different scenarios to run without having to
change the model itself.

To get an overview of the structures for at given scenario, the Visitor Pattern [8]
was used to traverse the object hierarchy and print the object data. Different implemen-
tations of the Visitor class were used to focus on certain aspects of model, for instance
one was used to present structures relating to tailoring and one was used for construct-

78

ing a graphical representation of the running scenario. The graphical representation is
described in Section 5.2.

An excerpt of a scenario output is shown in listing 1.1, where the structure of the
scenario can be seen by each element name being printed at a certain depth. The digit
following the # denotes the elements unique ID.�
###-- Displaying process overview

-Process Set-
----#3 The Super Process 1
--------Elements
----------#4 Element 1
------------SubElements
--------------#5 SubElement 1.1
--------------#8 SubElement 1.2
--------------#10 SubElement 1.3
----------#11 Element 2
------------SubElements
--------------#12 SubElement 2.1
� �

Listing 1.1. Excerpt of Scenario Output

By applying a special Visitor, made specifically for tailoring, an output can be cre-
ated which displays the path to tailored elements, as depicted in Listing 1.2. The name
in the parenthesis indicates the source of the tailoring. This output displays a new ver-
sion of the process set previously shown in Listing 1.1, in which certain elements have
been tailored.�
###-- Displaying tailored elements

-Process Set-
----#18 The Super Process 1 version 2
--------Elements
----------#4 Element 1
------------SubElements
--------------#5 SubElement 1.1

Tailoring test text (HealthCare Project)
--------------#8 SubElement 1.2

Check X before that (The SuperProject)
� �
Listing 1.2. Excerpt of Scenario Output from Tailoring Visitor

5.2 The Model as a Means of Communication

Having the VDM model enabled different scenarios of distinctive process setups to be
defined and analysed by executing the model. However during the development process
we found that it was still difficult to discuss the details of the model and to get a quick

79

overview of the effects that different development suggestions may have on the tool.
This was especially true for the industrial partner with no prior knowledge of formal
modelling or VDM. Initially some difficulties were caused by the difference in exper-
tise with regards to formal modelling and process descriptions between the industrial
and the academic partner respectively. The limited cross-knowledge made it challeng-
ing to determine what the modelling could and should be used for. Several times areas
of the tool extension, which were considered candidates for analysis in the model, were
eventually discarded as they were revealed to mainly concern how data should be se-
lected and managed from a user-interface and usability viewpoint. A subject for which
formal modelling is of limited use. This may have been caused by the industry partner’s
limited understanding of the capabilities of VDM modelling. Likewise the academic
partner had a challenge in understanding the process descriptions, because of the nar-
row knowledge of the business domain. Since the tool is built to support multiple busi-
ness areas and be compliant with multiple standards it was difficult to get an overview
of the constraints in the process descriptions, especially because no formal definition
of the processes exists, except partially what can be derived from the entire ISO9001
specification or CMMI models. Instead the construction of the tool is based on de facto
standards and experience in how the process description elements are used in practice
by process agents.

Fig. 3. Screenshot of the graphical presentation of the model

80

To aid the communication and momentum in the weekly development meetings, a
graphical representation was made for a portion of the process structure. This is pos-
sible owing to a functionality in Overture [11] which enables the developer to utilize
functionality defined in an external Java jar file. It is possible to add a graphical rep-
resentation on top of the model, which can then be completely controlled from within
the VDM model. An example of such a representation is depicted in Fig. 3, where the
structure of a process is displayed in a Java JTree structure. Buttons at bottom of the
screen enable a switch from a view which focuses on the entire process to a view that
focuses on tailored process elements.

6 Results

A key goal of having the model was to use it in relation to the two research aspects and
the extension of the tool. Tailoring was designed to strengthen the end-users possibil-
ity of interacting with the process, and the model made it possible to (1) examine how
different sources of tailoring could be added to a single process and (2) to determine
the behaviour of tailoring when applied to different versions of the same process. With
regards to the aspect of relating actual project specific data to a process, the model was
used for identifying the required data and to examine if the tool would be capable of
retrieving the required data. This lead to some further investigation, outside the scope
of the modeling, as to how this specific data could be gathered and described such that
the tool could process it.

The model did not disclose as many issues as were initially expected, neither in the
existing tool nor in the scenarios run for the extension. The only real defect discovered
in the existing tool was a risk of recursion in certain scenarios. This is however an
issue which is fairly simple to predict, considering the design of the tool. The existing
tool has a check for self-referential recursion, but the recursion issue found, was not
considered in the existing tool. Nonetheless as it turned out, it was not a risk either as
the tool has no automatic traversal of references, meaning the user of the tool would
have to traverse the recursive path manually to encounter the problem, and additionally
the tool automatically limits its depth to a certain level.

In relation to the extension, the model did not reveal any faults or inconsistencies
that could be a cause of concern in a later implementation of the tool. Instead the model
confirmed the behaviours and effects that had been anticipated during the continuous
planning of the extension. In this sense the model provided assurance in the develop-
ment process, as it made it possible to test different scenarios, which could then be
examined and the expectations could be confirmed.

There were parts of the tool that it was not necessary to include into the model, be-
cause they were clarified sufficiently. This has to be attributed to the weekly meetings
with the domain experts from Callis, which provided precise and valuable insight into
the tool and process modelling in general. Without this knowledge the model would
have been substantially larger, because of the many additional unknowns that had to be
included and examined. Thus good communication is extremely important and with the

81

project taken as a whole, the model was mainly used as mean for improving communi-
cation and driving development forward. The addition of a graphical representation of
modelled scenarios improved and simplified communication between the project mem-
bers, because it made the modelled scenarios independent from the formal notation
used. The visual examples made it easier for Callis to provide feedback on questions
raised from the concrete work with the model, leading to a minimization in the risk of
requirement misinterpretations.

There were however limits to the areas in which the model was applicable. A lot of
the subjects that the industry partner had an interest in modeling, had to do with human-
computer interaction and data presentation, e.g. how does one define tailoring for an
element or how is data from an artefact presented. These are questions and topics, to
which the VDM model could not be used, and more traditional development techniques
had to be brought in to play.

7 Concluding Remarks

Specifying and developing new functionality for an existing tool is a challenging and
difficult task. Not only must the challenges faced in the development of completely
new tools be handled, but the impact on, and the influence of, the existing tool has
to be included as well. Anticipating how new additions will affect existing software
requires knowledge and insight in to both the business area and the software tool itself.
This paper has presented the experiences gained in the use of VDM modelling in the
development of a process management tool supplied by an industrial partner. A model
has been created which includes a subset of the existing tool, as well as elements of an
extension, planed for a future versions of the tool.

The use of the model did not disclose as many issues as were initially expected,
and with the exception of a non-terminating recursion risk related to circular references,
only minor issues were found. The creation of the model did however provide an insight
into the tool and the business domain, which was advantageous given the academic
partners limited domain knowledge of the business field. Similarly a feature of VDM
was used to create a graphical representation of the model, which made it possible
to interact with the model without having any previous knowledge of formal modeling.
This made it easier to communicate the modelled scenario between the project partners.
In this project the principal value of the model has been the increased communication in
the project. The success of a project is very dependent on the communication between
the domain expert and the developers. Here the VDM model was successfully used as a
means of discussing specification of functionality and in achieving consensus in order
to avoid misunderstandings and ambiguities.

The future plans involve a full implementation of the extension into the existing
tool, and the deployment of the tool in industry workshops, in order to evaluate the
effects on process improvements.

Acknowledgements The author would like to thank the industrial partner Callis for
taking part in this research project and in this publication on the project experiences
and findings. In particular the development meetings and discussions with Peter Voldby

82

Petersen have been highly valuable in the comprehension of the Process Management
Tools domain and the end-users application of these types of tools. This research project
is partially funded by the iKraft Project, as part of Innovation pool in the Central Den-
mark Region.

References

1. Aalst, W.M.P.V.D.: The Application of Petri Nets to Workflow Management. Journal of Cir-
cuits, Systems, and Computers 8(1), 21–66 (1998)

2. Agerholm, S., Schafer, W.: Analyzing SAFER using UML and VDM++. In: Fitzgerald, J.,
Larsen, P.G. (eds.) VDM in Practice. pp. 139–141 (September 1999)

3. van den Berg, M., Verhoef, M., Wigmans, M.: Formal Specification of an Auctioning System
Using VDM++ and UML – an Industrial Usage Report. In: Fitzgerald, J., Larsen, P.G. (eds.)
VDM in Practice. pp. 85–93 (September 1999)

4. Bjørner, D.: The Vienna Development Method: Software Abstraction and Program Synthe-
sis, Lecture Notes in Computer Science, vol. 75: Math. Studies of Information Processing.
Springer-Verlag (1979)

5. Clarke, E.M., Wing, J.M.: Formal Methods: State of the Art and Future Directions. ACM
Computing Surveys 28(4), 626–643 (1996)

6. Conradi, R., Fuggetta, A.: Improving Software Process Improvement. IEEE Software 19(4),
92–99 (July 2002)

7. Curtis, B., I.Kellner, M., Over, J.: Process modeling. Commun. ACM 35(9), 75–90 (Septem-
ber 1992)

8. E.Gamma, R.Helm, R., J.Vlissides: Design Patterns. Elements of Reusable Object-Oriented
Software. Addison-Wesley Professional Computing Series, Addison-Wesley Publishing
Company (1995)

9. Fitzgerald, J.S., Larsen, P.G., Verhoef, M.: Vienna Development Method. Wiley Encyclope-
dia of Computer Science and Engineering (2008), edited by Benjamin Wah, John Wiley &
Sons, Inc

10. Jones, C.B.: Systematic Software Development Using VDM. Prentice-Hall International,
Englewood Cliffs, New Jersey, second edn. (1990), iSBN 0-13-880733-7

11. Larsen, P.G., Lausdahl, K., Ribeiro, A., Wolff, S., Battle, N.: Overture VDM-10 Tool Sup-
port: User Guide. Tech. Rep. TR-2010-02, The Overture Initiative, www.overturetool.org
(May 2010)

12. Mishra, S., Schlingloff, B.H.: Compliance of cmmi process area with specification based
development. In: ACIS International Conference on Software Engineering Research, Man-
agement and Applications. pp. 77–84. IEEE Computer Society, Los Alamitos, CA, USA
(2008)

13. Schlatte, R., Aichernig, B.: Database Development of a Work-Flow Planning and Tracking
System Using VDM-SL. In: Fitzgerald, J., Larsen, P.G. (eds.) VDM in Practice. pp. 109–125
(September 1999)

14. Smith, P.R., Larsen, P.G.: Applications of VDM in Banknote Processing. In: Fitzgerald, J.S.,
Larsen, P.G. (eds.) VDM in Practice: Proc. First VDM Workshop 1999 (September 1999),
available at www.vdmportal.org

15. Woodcock, J., Larsen, P.G., Bicarregui, J., Fitzgerald, J.: Formal Methods: Practice and Ex-
perience. ACM Computing Surveys 41(4), 1–36 (October 2009)

83

Formal Modelling and Safety Analysis of an
Embedded Control System for

Construction Equipment:
an Industrial Case Study using VDM

Takayuki Mori1,2

1 School of Computing Science, Newcastle University, UK
2 Komatsu Ltd., Japan

Abstract. This paper reports on an industrial application of formal methods to
develop an embedded control system for construction equipment. Informal spec-
ifications and safety requirements of the system are formalised using a formal
modelling language VDM, and the derived model is used for safety analysis of
the system. In our approach, we introduce a kind of modelling pattern: a fault
framework, which abstracts the notion of faults and can be widely exploited for
analysis and design of control systems dealing with faults. The results of vali-
dation and safety analysis of the model are presented, and it is revealed that our
modelling approach is effectively applied to the analysis of a practical embedded
control system in industry.

1 Introduction

A number of functions of modern construction equipment are realised by embedded
control systems in order to achieve desired performance, e.g. low fuel consumption
and emission as well as high productivity and comfort. The scale and complexity of
control software are rapidly increasing. This makes it difficult to ensure the correctness
of the software by conventional approaches such as testing and human review. Formal
techniques are expected to be promising approaches to make the control software more
reliable.

Safety is a critical factor in the control systems of construction equipment. In order
to ensure safety, the Failure Mode and Effects Analysis (FMEA) method [5] has been
used for decades. In FMEA, we identify all potential faults of the system to be devel-
oped and assess the effect of each fault. If the effect is not negligible for the system
from the viewpoint of safety or functionality, a way of detecting the fault and a measure
to be taken in case of the fault occurrence should be determined to guarantee a certain
level of safety or functionality.

The FMEA process is usually carried out manually by system experts. However,
the growth in the scale and complexity of the control system makes the task itself more
complicated and difficult. For example, it could be possible that a measure against some
fault would cause a side effect to another portion of the control system and lead to an
unpredictable behaviour. For the above reason, we aim to describe formally the speci-
fications of fault detection and associated measures of the system using a formal mod-
elling notation VDM [1, 2], and check if the system satisfies certain safety properties.

This paper reports on a case study of applying VDM to safety analysis of a trans-
mission controller for a wheel loader (a digging and loading vehicle). The controller
is responsible for gear change (including forward-reverse change) of the transmission,
which transfers engine power to the wheels. The transmission consists of a number
of gears and clutches hydraulically controlled by the system. By engaging the proper
combination of clutches, the rotating direction of an axle (that is, the moving direction
of the vehicle) and the gear ratio of the transmission are determined.3 The moving di-
rection of the vehicle is specified by a direction lever which is mounted on a steering
column and manipulated by an operator of the vehicle. The proper gear is selected by
a gear change algorithm implemented in the controller according to the vehicle speed
and the engine revolution etc. In our current research, however, we simply focus on a
part of the control system, a specification for detecting the direction lever position, and
investigate if its safety properties are guaranteed when some fault occurs in the system.
This is mainly because the wheel loader has characteristics that its moving direction is
frequently switched by the operator for digging and loading work, and detecting the di-
rection lever position is a crucial factor in the system. Moreover, the scale of the system
seems to be moderate for our initial trial.

The rest of the paper is organised as follows. The next section describes informal
specifications and safety requirements of the control system considered in the case
study. In Section 3, we present a formal model of the system along with a kind of
modelling pattern: a fault framework. Section 4 describes the results of validation and
safety analysis of the system. Finally, Section 5 concludes the paper. The full VDM++
model for the case study is provided in Appendix A.

2 Informal Description of the System

In this section, we informally describe the specifications and the safety requirements of
the control system under consideration.4

2.1 Control Specifications

The control system consists of the direction lever and the transmission controller. Fig-
ure 1 shows the system diagram. Each component is described as follows:

Direction Lever: It is an input device to the transmission controller, mounted on the
steering column of the vehicle and manipulated by the operator. The lever has three
positions, namely forward (F), neutral (N) and reverse (R), specifying the direction
to go. It generates three digital and one analogue input signals. For redundancy, the
former are used as primary signals and the latter is used as a backup. The electrical
characteristics of the digital and the analogue input signals are illustrated in Figs. 2
and 3 respectively.

3 The transmission is 4-speed in both forward and reverse directions.
4 The example in this paper is simplified to some extent from the original control specifications.

Furthermore, tangible data values, such as voltage etc., are not shown explicitly and denoted
by symbols for confidentiality reasons.

85

Digital input: F

Digital input: N

Digital input: R

Analogue input

Direction lever Transmission controller

Fig. 1. System Diagram

Digital Input Signals: Only one of the three signals F, N or R is “on” depending
on the lever position. The signals do not overlap one another. That is, there
need to exist areas in which no digital input signals are “on” between the lever
positions F and N, and between N and R. The lever can be intentionally held in
the middle of the lever positions. This means that we cannot distinguish open-
circuit of the digital input from the case in which the lever is being held in the
middle position.

Analogue Input Signal: It is a voltage signal which ranges depending on the lever
position, indicating a value from vR1 to vR2 at the position R, vN1 to vN2 at
the position N and vF1 to vF2 at the position F. It has some tolerance at each
position.

The possible combination of the digital and the analogue input signals is specified
in Table 1. For instance, when the lever is set to the position R, only the digital
input signal R should be “on” and the analogue input signal should be between
vR1 and vR2. In case the lever is held in the middle of the positions R and N, the
following are possible:

1. The digital input signal R is “on” and the analogue input signal is between
vR1 and vN2.

2. No digital input signals are “on” and the analogue input signal is between
vR1 and vN2.

3. The digital input signal N is “on” and the analogue input signal is between
vR2 and vN2.

This means it is possible that the lever positions detected by the digital and the
analogue input are different from each other (though the possibility is low in reality)
and this makes the control specifications complicated.

Notes. In older types of control system, the direction lever consisted of only digital
input signals. In case a fault has occurred in the system, the lever position is simply
regarded as N, which is allowed from a safety perspective. But from the viewpoint
of functionality, it is desirable that the vehicle can move even if some fault occurs
in the system. For the above reason, we have worked on adding an analogue input

86

on

off

on

off

on

off

Digital input

F

N

R

R N F Lever position

Fig. 2. Electrical Characteristics of the Digital Input Signals

Voltage

O
R N F Lever position

vF2

vF1

vN2

vN1

vR2

vR1

Fig. 3. Electrical Characteristics of the Analogue Input Signal

Table 1. Possible Combination of the Digital Input and the Analogue Input

Direction Digital Analogue input signal
lever input R Mid(RN) N Mid(FN) F

position signal vR1–vR2 vR2–vN1 vN1–vN2 vN2–vF1 vF1–vF2

R R © – – – –
R × × × – –

Mid(RN) None × × × – –
N – × × – –

N N – – © – –
N – – × × –

Mid(FN) None – – × × ×
F – – × × ×

F F – – – – ©

© : normal position, × : possible in the middle position, – : impossible

87

signal to the system to improve redundancy. This not only makes the control spec-
ifications complicated, but also makes safety analysis of the system difficult. This
motivates us to apply formal methods to our safety analysis process.

Transmission Controller: It detects the position of the direction lever using the digital
and the analogue input signals. In detection, it also diagnoses each input signal
and takes the proper measures if some fault has occurred. The specifications for
detecting the direction lever position are described as follows. Table 2 shows how
to detect the lever position by the digital input signals. If only one signal is “on”,
the signal indicates the lever position. If no or multiple signals are “on”, the lever
position is determined by a fault measure.
Table 3 specifies the lever position detection by the analogue input signal. In case
the signal indicates a voltage of a middle position of the lever, the position is recog-
nised as N. If it is out of range (too low or high), the lever position is determined
by a fault measure.

We identify the following six fault modes possible in the system.

F1: Digital input: open-circuit or short-circuit to ground (minor fault)
F2: Digital input: open-circuit or short-circuit to ground (severe fault)
F3: Digital input: short-circuit to power
F4: Analogue input: open-circuit or short-circuit to ground
F5: Analogue input: short-circuit to power
F6: Analogue input: internal circuit fault

A way of detecting each fault and a measure which should be taken in case the
fault is detected are specified. As an example, we show the specification of F1 in
Table 4. The table instructs how to detect the fault and what to do in case of the
fault. Specifically, if “error state” holds, the system starts to detect the fault and
takes a “measure before fault confirmation”. If the error state has continued for
“fault detecting time”, it is confirmed that the fault has occurred, and a “measure
after fault confirmation” is taken. After that, if “recovery state” holds continuously
for “recovery detecting time”, it is confirmed that the fault has recovered, and a
“measure after fault recovery” is taken.
Some fault modes deserve comment. Both F1 and F2 indicate open-circuit or short-
circuit to ground of the digital input signals. For the reason that we cannot distin-
guish the fault from the case in which the lever is being held in the middle position
(as mentioned above), the fault is detected in two-stage manner. The fault detecting
time of F1 (minor fault) is set to a value less than that of F2 (severe fault) so that
F1 is detected earlier than F2. In case the occurrence of F1 has been confirmed,
the system gives an alarm. If the operator puts the lever back to the normal posi-
tion (if possible) and the error state no longer holds, the fault F1 recovers and the
alarm stops. If the operator does not put the lever back or open-circuit has actually
occurred, the fault F2 is confirmed eventually.5

5 Strictly speaking, F1 is not regarded as a fault in the system, though this is not directly relevant
to our case study.

88

Table 2. Detection of the Direction Lever Position by the Digital Input Signals

No. Digital input signals Detected lever position
R N F

1 © R
2 © N
3 © F
4 Undefined. Obey fault detection and measure.
5 © © Undefined. Obey fault detection and measure.
6 © ©
7 © ©
8 © © ©

© : on, blank: off

Table 3. Detection of the Direction Lever Position by the Analogue Input Signal

No. Analogue input Detected lever position
voltage (Ain)

1 Ain < vR1 Undefined. Obey fault detection and measure.
2 vR1 ≤ Ain ≤ vR2 R
3 vR2 < Ain < vN1 N (middle position between R and N)
4 vN1 ≤ Ain ≤ vN2 N (normal position)
5 vN2 < Ain < vF1 N (middle position between F and N)
6 vF1 ≤ Ain ≤ vF2 F
7 vF2 < Ain Undefined. Obey fault detection and measure.

Table 4. An Example of Fault Detection and Measure

Fault mode Digital input: open-circuit or short-circuit to ground
Error state All digital input signals F, N and R are “off”.
Fault detecting time t1f seconds
Measure before fault confirma-
tion

Keep the detected lever position before the error state.

Measure after fault confirma-
tion

Obey the detected lever position by the analogue input.

Recovery state Only one digital input signal F, N or R is “on”.
Recovery detecting time t1r seconds
Measure after fault recovery Keep obeying the detected lever position by the analogue input

until it becomes consistent with that by the digital input. After
the consistency, obey the detected lever position by the digital
input.

89

The fault F6 indicates impossible combination of the digital and the analogue input
signals specified in Table 1. The system detects the situation as a fault of an internal
circuit.

In short, the specifications are summarised as follows:

1. If the digital input signals are normal, the position detected by the digital input
signals is valid.

2. If the digital input signals have a fault, the position detected by the analogue
input signal is valid.

3. Even if the digital input signals have recovered from the fault, the position
detected by the analogue input signal is still valid until the detected positions by
the digital and the analogue input signals are consistent with each other. Once
the consistency is reached, the position detected by the digital input signals
becomes valid.

4. If both the digital and the analogue input signals respectively have a fault, the
lever position is recognised as N.

2.2 Safety Requirements

We informally describe the safety requirements to be satisfied by the control system as
follows:

R1: If any fault occurs in the system, the detected position of the direction lever must
be consistent with the actual lever position or recognised as neutral (N), i.e. if the
actual position is F, the detected position must be F or N; if the actual position is
N, the detected position must be N; and if the actual position is R, the detected
position must be R or N.

R2: If any fault occurs in the system, the detected position of the direction lever must
not change to F or R without lever manipulation by the operator of the vehicle.

The above requirement R1 inhibits the vehicle from moving in the opposite direc-
tion of the lever position or moving while the lever is set to N. It is allowable from the
safety viewpoint that the lever position is recognised as N by a fault measure while the
actual position is not N. The requirement R2 inhibits the vehicle from moving suddenly
as opposed to the operator’s intention.

3 Formal Modelling of the System

We model the control system described informally in the previous section using an
object-oriented formal modelling notation VDM++ [2], because the notions of the object-
oriented method, e.g. inheritance, encapsulation etc., seem to be useful also in formal
specification description. The overview of the model (class diagram) is illustrated in
Fig. 4. In the following subsections, we explain the characteristics of the model and
describe each class in detail. The full VDM++ model is given in Appendix A.

90

T
im
e
r

-
ti

m
e

r:

T
im

e
 =

 0

+

T
im

e
r(

)
:

T
im

e
r

+

u
p

d
a

te
()

 :
 v

o
id

+

re
se

tT
im

e
r(

)
:

v
o

id

+

g
e

tT
im

e
()

 :
 T

im
e

M
a
n
a
g
e
r

+

D
in

O
p

M
in

o
rD

e
tT

im
e

:
 T

im
e

 =
 8

+

D
in

O
p

M
in

o
rR

e
c
T

im
e

:
 T

im
e

 =
 0

+

D
in

O
p

S
e

v
e

re
D

e
tT

im
e

:
 T

im
e

 =
 1

5

+

D
in

O
p

S
e

v
e

re
R

e
c
T

im
e

:
 T

im
e

 =
 5

+

D
in

S
h

D
e

tT
im

e
:

 T
im

e
 =

 3

+

A
in

F
a

u
lt

D
e

tT
im

e
:

 T
im

e
 =

 5

+

A
in

F
a

u
lt

R
e

c
T

im
e

:
 T

im
e

 =
 5

+

S
a

fe
ty

C
h

e
c
kT

im
e

:
 T

im
e

 =

D
in

O
p

M
in

o
rD

e
tT

i.
..

+

M
a

n
a

g
e

r(
)

:
M

a
n

a
g

e
r

+

u
p

d
a

te
()

 :
 v

o
id

E
n
v
ir
o
n
m
e
n
t

-
tr

a
c
e

:
 m

a
p

 T
im

e
 t

o
 S

y
sS

ta
te

 =
 {

|-
>

}

+

E
n

v
ir

o
n

m
e

n
t(

)
:

E
n

v
ir

o
n

m
e

n
t

+

g
e

tD
in

V
a

lu
e

()
 :

 b
o

o
l

+

g
e

tA
in

V
a

lu
e

()
 :

 A
in

S
ta

te

+

se
tD

e
te

c
tL

e
v
P

o
si

ti
o

n
()

 :
 v

o
id

+

g
e

tT
ra

c
e

()
 :

 m
a

p
 T

im
e

 t
o

 S
y
sS

ta
te

-
If

L
e

v
e

rI
sF

T
h

e
n

N
o

tR
()

 :
 b

o
o

l

-
If

L
e

v
e

rI
sR

T
h

e
n

N
o

tF
()

 :
 b

o
o

l

-
If

L
e

v
e

rI
sN

T
h

e
n

N
()

 :
 b

o
o

l

-
N

o
tM

o
v
e

W
it

h
o

u
tO

p
e

ra
ti

o
n

()
 :

 b
o

o
l

D
ig
it
a
lI
n
p
u
t

-
c
h

a
n

n
e

l:

D
in

C
h

a
n

n
e

l

-
v
a

lu
e

:
 b

o
o

l
=

 f
a

ls
e

+

D
ig

it
a

lI
n

p
u

t(
)

:

D
ig

it
a

lI
n

p
u

t

+

u
p

d
a

te
()

 :
 v

o
id

+

g
e

tV
a

lu
e

()
 :

 b
o

o
l

A
n
a
lo
g
u
e
In
p
u
t

-
v
a

lu
e

:
 A

in
S

ta
te

 =
 <

S
U

B
_

R
>

+

A
n

a
lo

g
u

e
In

p
u

t(
)

:

A
n

a
lo

g
u

e
In

p
u

t

+

u
p

d
a

te
()

 :
 v

o
id

+

g
e

tV
a

lu
e

()
 :

 A
in

S
ta

te

D
ir
e
c
ti
o
n
L
e
v
e
rD
ig
it
a
l

+

D
ir

e
c
ti

o
n

L
e

v
e

rD
ig

it
a

l(
)

:

D
ir

e
c
ti

o
n

L
e

v
e

rD
ig

it
a

l

+

u
p

d
a

te
()

 :
 v

o
id

+

g
e

tP
o

si
ti

o
n

()
 :

 [
D

ir
e

c
ti

o
n

]

D
ir
e
c
ti
o
n
L
e
v
e
rA
n
a
lo
g
u
e

-
is

V
a

li
d

:
 b

o
o

l
=

 t
ru

e

+

D
ir

e
c
ti

o
n

L
e

v
e

rA
n

a
lo

g
u

e
()

:
D

ir
e

c
ti

o
n

L
e

v
e

rA
n

a
lo

g
u

e

+

u
p

d
a

te
()

 :
 v

o
id

+

g
e

tP
o

si
ti

o
n

()
 :

 [
D

ir
e

c
ti

o
n

]

D
ir
e
c
ti
o
n
L
e
v
e
r

#

p
o

si
ti

o
n

:
 D

ir
e

c
ti

o
n

 =
 <

D
IR

_
N

>

+

D
ir

e
c
ti

o
n

L
e

v
e

r(
)

:

D
ir

e
c
ti

o
n

L
e

v
e

r

+

u
p

d
a

te
()

 :
 v

o
id

+

g
e

tP
o

s
it

io
n

()
 :

 [
D

ir
e

c
ti

o
n

]

F
a
u
lt

-
st

a
te

:
 F

a
u

lt
S

ta
te

 =
 <

F
L

T
_

N
O

R
M

A
L

>

-
d

e
te

c
ti

n
g

T
im

e
:

 [
T

im
e

]

-
re

c
o

v
e

ry
T

im
e

:
 [

T
im

e
]

+

F
a

u
lt

()
 :

 F
a

u
lt

+

a
d

d
F

a
u

lt
()

 :
 v

o
id

+

u
p

d
a

te
()

 :
 v

o
id

-
d

o
F

a
u

lt
N

o
rm

a
l(

)
:

v
o

id

-
d

o
F

a
u

lt
D

e
te

c
ti

n
g

()
 :

 v
o

id

-
d

o
F

a
u

lt
C

o
n

fi
rm

e
d

()
 :

 v
o

id

-
d

o
F

a
u

lt
R

e
c
o

v
e

ri
n

g
()

 :
 v

o
id

-
e

rr
o

rS
ta

te
()

 :
 b

o
o

l

-
re

c
o

v
e

ry
S

ta
te

()
 :

 b
o

o
l

+

g
e

tF
a

u
lt

S
ta

te
()

 :
 F

a
u

lt
S

ta
te

+

is
F

a
u

lt
C

o
n

fi
rm

e
d

()
 :

 b
o

o
l

L
e
v
e
rP
o
s
it
io
n
D
e
te
c
ti
o
n

-
d

e
te

c
tL

e
v
P

o
s:

[D

ir
e

c
ti

o
n

]
=

 n
il

-
d

in
H

a
sP

ri
o

ri
ty

:
 b

o
o

l
=

 t
ru

e

+

L
e

v
e

rP
o

si
ti

o
n

D
e

te
c
ti

o
n

()
 :

L
e

v
e

rP
o

si
ti

o
n

D
e

te
c
ti

o
n

+

u
p

d
a

te
()

 :
 v

o
id

F
a
u
lt
D
in
O
p
e
n
M
in
o
r

+

F
a

u
lt

D
in

O
p

e
n

M
in

o
r(

)
:

F
a

u
lt

D
in

O
p

e
n

M
in

o
r

-
e

rr
o

rS
ta

te
()

 :
 b

o
o

l

-
re

c
o

v
e

ry
S

ta
te

()
 :

 b
o

o
l F
a
u
lt
D
in
O
p
e
n
S
e
v
e
re

+

F
a

u
lt

D
in

O
p

e
n

S
e

v
e

re
()

 :

F
a

u
lt

D
in

O
p

e
n

S
e

v
e

re

-
e

rr
o

rS
ta

te
()

 :
 b

o
o

l

-
re

c
o

v
e

ry
S

ta
te

()
 :

 b
o

o
l

F
a
u
lt
D
in
S
h
o
rt

+

F
a

u
lt

D
in

S
h

o
rt

()
 :

F
a

u
lt

D
in

S
h

o
rt

-
e

rr
o

rS
ta

te
()

 :
 b

o
o

l

-
re

c
o

v
e

ry
S

ta
te

()
 :

 b
o

o
l

F
a
u
lt
A
in
O
p
e
n

+

F
a

u
lt

A
in

O
p

e
n

()
 :

F
a

u
lt

A
in

O
p

e
n

-
e

rr
o

rS
ta

te
()

 :
 b

o
o

l

-
re

c
o

v
e

ry
S

ta
te

()
 :

 b
o

o
l

F
a
u
lt
A
in
S
h
o
rt

+

F
a

u
lt

A
in

S
h

o
rt

()
 :

F
a

u
lt

A
in

S
h

o
rt

-
e

rr
o

rS
ta

te
()

 :
 b

o
o

l

-
re

c
o

v
e

ry
S

ta
te

()
 :

 b
o

o
l F
a
u
lt
A
in
In
te
rn
a
l

+

F
a

u
lt

A
in

In
te

rn
a

l(
)

:

F
a

u
lt

A
in

In
te

rn
a

l

-
e

rr
o

rS
ta

te
()

 :
 b

o
o

l

-
re

c
o

v
e

ry
S

ta
te

()
 :

 b
o

o
l

C
o
m
m
o
n

+

N
u

m
b

e
rO

fT
ru

e
()

 :
 n

a
t

F
a

u
lt

M
o

d
e

#
fa

u
lt

0
..

*

D
ir

e
c
ti

o
n

-d
in

3

-e
n

v

1

D
ir

e
c
ti

o
n

-d
in 3

-e
n

v
1

-d
in

1

D
ir

e
c
ti

o
n

-d
in

3

-a
in

1

-t
im

e
r 1

-e
n

v

1

-a
in 1

F
a

u
lt

M
o

d
e

#
fa

u
lt

3

-a
in

1

+
le

v
P

o
sD

e
t

1

-a
in

1

D
ir

e
c
ti

o
n

-d
in 3

-a
in

1

+
e

n
v 1

F
a

u
lt

M
o

d
e

+
ti

m
e

r

*

D
ir

e
c
ti

o
n

-d
in 3

+
a

in
1

+
sy

sT
im

e

1

D
in

C
h

a
n

n
e

l

+
d

in

*

F
a

u
lt

M
o

d
e

+
fa

u
lt *

+
d

ir
L

e
v
D

in

1

-a
in

1

-s
y
sT

im
e

1
+

d
ir

L
e

v
A

in

1

Fi
g.

4.
O

ve
rv

ie
w

of
th

e
M

od
el

91

3.1 Periodic Execution Architecture

The actual transmission controller is a periodic real-time system with a certain period,
that is, a specific program is executed repeatedly every time unit. In order to reflect such
a mechanism into the model, we introduce a periodic execution architecture, referred
to as “time-triggered object-oriented model” in [6]. In this architecture, each class has
a method update, in which its attributes are updated.6 The Manager class, which
controls the model execution, calls the update method of each class in a specified
order as it increments the system timer by one time unit. That is, each class is updated
once per time unit.

3.2 Fault Framework

In the model, we abstract the notion of faults (e.g. open- or short-circuit etc.) as a class
containing a state represented by the state transition diagram of Fig. 5. The figure says:

1. As long as the device is normally working, the state stays in NORMAL.
2. If the error state holds, the state goes into DETECTING.
3. If the error state continues for a specified time (detectingTime), the fault is

confirmed (CONFIRMED). If the error state no longer holds while in DETECTING,
the state goes back to NORMAL.

4. If the recovery state holds while in CONFIRMED, the state goes into RECOVERING.
5. If the recovery state continues for a specified time (recoveryTime), the fault

recovers (NORMAL). If the recovery state no longer holds while in RECOVERING,
the state goes back to CONFIRMED.

NORMAL

Initial

DETECTING

CONFIRMEDRECOVERING

[timer.getTime() >= detectingTime]

[not recoveryState()]

[recoveryState() and recoveryTime <> nil]

/timer.reset()

[not errorState()]

[errorState() and detectingTime <> nil]

/timer.reset()

[timer.getTime() >= recoveryTime]

Fig. 5. State Transition Diagram of Fault

6 The method corresponds to a Step in a VDM-RT context [3, 4]. But we use the name update
in this paper according to [6] and our convention.

92

3.3 Detailed Description of Each Class

Common: Types and a function commonly used by various classes are defined in this
class. It is inherited by all the other classes to make the model description simple,
though in Fig. 4, inheritance arrows are hidden for legibility. Some of principal
types are illustrated here.�
types
public Time = nat;

public Direction = <DIR_F> | <DIR_N> | <DIR_R>;

public AinState = Direction | <SUB_R> | <MID_RN>
| <MID_FN> | <SUPER_F>;
� �

Time is defined as natural number (nat), denoting discrete time steps in the con-
trol system. The notion of direction (F, N and R) is defined as a union type of three
quote types. We abstract the analogue input signal using a union type AinState
instead of expressing it in voltage as follows:

<SUB_R>: Ain < vR1

<DIR_R>: vR1 ≤ Ain ≤ vR2

<MID_RN>: vR2 < Ain < vN1

<DIR_N>: vN1 ≤ Ain ≤ vN2

<MID_FN>: vN2 < Ain < vF1
<DIR_F>: vF1 ≤ Ain ≤ vF2
<SUPER_F>: vF2 < Ain

Manager: This class controls the overall model. It is responsible for constructing all
instances of the model and executing them. All instances are created in the con-
structor Manager, and the operation update calls the same operations of all the
other classes in a specified order (usually from lower to upper level classes). Spe-
cific values of fault and recovery detecting times, which are used to instantiate each
fault class, are defined in this class. Note that they do not express the actual val-
ues of the control system. They are properly chosen to make the model feasible
in practicable time and to simplify creation of test data. In our case, magnitude
relation between the values is significant, and the value itself is not.

Timer: A generic timer class containing one instance variable timer, which is incre-
mented by one step time in the operation update. The operation resetTimer
sets the timer to zero. Instances of the class are used as a system timer, which
denotes time evolution in the model, and a timer for each fault class, which is used
to detect the fault.

Environment: As advocated in [3, 4], the components outside the controller are mod-
elled as a class Environment. It provides input to the controller, i.e. the digital
input signals F, N, R and the analogue input signal, and receives the detected lever

93

position from the controller as output of the system. It also has the actual lever po-
sition used for safety requirement check. This information is put into one record
type SysState, and trace, a mapping from Time to SysState, is defined as
an instance variable of the class, indicating time series of input and output data of
the system.�
types
public SysState :: dinF : bool

dinN : bool
dinR : bool
ain : AinState
levPos : LeverPosition
detectLevPos : [Direction];

instance variables
private trace : map Time to SysState := {|->};
� �
The operations getDinValue and getAinValue respectively return the digital
and the analogue input value at the current system time, and another operation
setDetectLevPosition is called to set the detected lever position to trace.

DigitalInput and AnalogueInput: These two classes represent input channels of the
controller, serving as interface to Environment. In the operation update, each
class gets its current value from Environment and stores it in its instance vari-
able value, which is used by the other upper level classes, that is, Fault and
DirectionLever (described below). Three instances of the DigitalInput
class, namely the digital input F, N and R, are created by the Manager class.

Fault: A superclass of the following six subclasses. It implements the state transition
of fault described in Sect. 3.2, and provides the other classes with the state in-
formation. Fault detecting time and recovery time are respectively declared as an
instance variable of optional type [Time]. The value nil means that the fault
is undetectable or unrecoverable, respectively. The operations errorState and
recoveryState are implemented in each subclass representing each fault mode
(F1 to F6 in Sect. 2.1), because they are different depending on the fault modes.
Note that these operations are declared as abstract methods.

– FaultDinOpenMinor:
Digital input: open-circuit or short-circuit to ground (F1)

– FaultDinOpenSevere:
Digital input: open-circuit or short-circuit to ground (F2)

– FaultDinShort:
Digital input: short-circuit to power (F3)

– FaultAinOpen:
Analogue input: open-circuit or short-circuit to ground (F4)

94

– FaultAinShort:
Analogue input: short-circuit to power (F5)

– FaultAinInternal:
Analogue input: internal circuit fault (F6)

DirectionLever: A superclass of the following two subclasses. In the update oper-
ation (implemented in the subclass), it updates its instance variable position,
which denotes the position of the direction lever detected by the digital or the ana-
logue input depending on its subclass. Users of this class do not need to take into
account by which input the position is detected.

– DirectionLeverDigital:
This class detects the direction lever position using the digital input and its
fault information according to the control specifications described in Sect. 2.1.
The operation getPosition returns nil if at least one digital input fault is
confirmed, otherwise it returns the detected lever position.

– DirectionLeverAnalogue:
This class detects the direction lever position using the analogue input and its
fault information according to the control specifications described in Sect. 2.1.
It has an instance variable isValid, which is used to realise the measures
after fault recovery of F4 and F5. Briefly speaking, the variable is set to false
if an analogue input fault is confirmed, and held false unless the normal N
position is detected after fault recovery. As long as the variable is false, the
lever position is regarded as N.

LeverPositionDetection: In the operation update in this class, the conclusive direc-
tion lever position is determined using the positions detected by the digital and the
analogue input respectively, and the result is set to Environment. This class has
an instance variable dinHasPriority, which is used to realise the measures af-
ter fault recovery of F1 and F2. The variable is set to false if a digital input fault
is confirmed, and held false unless the detected lever positions by the digital and
the analogue input are consistent with each other after fault recovery. As long as
the variable is false, the lever position detected by the analogue input is valid.

3.4 Safety Requirements

Safety requirements are described in the Environment class because they require
to access the lever position information enclosed in the class. Specifically, the require-
ments are formalised as postconditions of the operation setDetectLevPosition,
which the LeverPositionDetection class calls to set the conclusive detected
lever position to the Environment class. The postconditions are divided into four
sub-operations (see Appendix A.4). We comment on the first and the last ones for illus-
tration:�
private IfLeverIsFThenNotR: () ==> bool
IfLeverIsFThenNotR() ==

95

let curTime = sysTime.getTime()
in

return
(((curTime >= Manager‘SafetyCheckTime) and

(forall t in set
{curTime - Manager‘SafetyCheckTime,..., curTime} &
trace(t).levPos = <DIR_F>))

=> trace(curTime).detectLevPos <> <DIR_R>)
post RESULT;
...
private NotMoveWithoutOperation: () ==> bool
NotMoveWithoutOperation() ==
let curTime = sysTime.getTime()
in

return
(((curTime >= Manager‘SafetyCheckTime) and

(forall t in set
{curTime - Manager‘SafetyCheckTime,..., curTime-1} &
(trace(t).levPos = trace(curTime).levPos and
trace(t).detectLevPos = <DIR_N>)))

=> trace(curTime).detectLevPos = <DIR_N>)
post RESULT;
� �

The operation IfLeverIsFThenNotR insists: if the lever has been set in the
position F for a specified time, the detected lever position at the current time should
not be R, which corresponds to the safety requirement R1 in Sect. 2.2. The operation
NotMoveWithoutOperation insists: if the lever has not been manipulated and the
detected lever position has been N for a specified time (until one step time before), the
detected lever position at the current time should also be N, corresponding to the safety
requirement R2.

4 Validation and Safety Analysis

In our approach, validation process is composed of two phases: unit testing and system
testing. The former tests each class of the model, while the latter deals with the whole
system. A testing framework VDMUnit [2, Chap. 9] is used for both testing phases.
Various time series of input data for the Environment class (so called test scenarios)
are elaborated. Using assert functions of VDMUnit, we check if a return value of each
method of each class (in the case of unit testing) or the detected lever position (in the
case of system testing) is consistent with the expected value at the time as we execute
the model periodically. An example of the test cases is given below:�
class SystemTest1 is subclass of TestCase, Environment

operations
...

96

public runTest : () ==> ()
runTest() ==
(

let testInData = {t |-> testData(t).inData |
t in set dom testData}

in (
dcl mgr : Manager := new Manager(testInData);
for t = 0 to (card dom testData - 1)
do (

mgr.update();
assertTrue("t=" ˆ VDMUtil‘val2seq_of_char[nat](t) ˆ

", failed.",
mgr.env.getTrace()(t).detectLevPos =
testData(t).expectVal)

)
)

);

types
private TestData :: inData : SysState

expectVal : [Direction];
values
-- time to (input data, expected value of trace(t).detectLevPos)
private testData: map Time to TestData =
{

0 |-> mk_TestData(mk_SysState(false, true, false,
<DIR_N>, <DIR_N>, nil), <DIR_N>),

1 |-> mk_TestData(mk_SysState(false, false, false,
<MID_FN>, <MID_FN_>, nil), <DIR_N>),

2 |-> mk_TestData(mk_SysState(true, false, false,
<DIR_F>, <DIR_F>, nil), <DIR_F>),

...
};

end SystemTest1
� �
The value testData denotes the time series of input data and expected values of

the test scenario. We considered various scenarios: for example, normal lever operation
without faults, a case in which open-circuit of the digital input signal F occurs and then
it recovers, and so on. As for the system testing, we executed 14 test scenarios in total.

As a result, we have confirmed that the model behaved as expected for all the in-
put data series elaborated. The test coverage information generated by Overture indi-
cates that almost all statements of the model are tested, except for a part of the follow-
ing two operations: DirectionLeverDigital‘update (coverage is 98.6%) and
Fault‘doFaultNormal (89.4%). But these statements can never been executed
under the current specifications of fault detection and the data settings. Therefore we
conclude that virtually every part of the model is tested.

97

In the validation process, however, we realised that one of the safety requirements
was not satisfied (a postcondition was violated) for certain input data series. This occurs
in the following manner:

1. The direction lever is in the middle of the positions F and N, and no digital input
signals are “on”.

2. The analogue input signal indicates the position F (this meets the specifications of
Table 1).

3. The digital input signal N periodically short-circuits to power with a period less
than the fault detecting time, that is, the signal N alternates between “on” and “off”
in a short period of time. The controller is not able to detect the fault (because the
time in which the signal N remains “on” or “off” respectively is too short for the
controller to detect the fault) and recognises the lever position as N.

4. In these situations, if the short-circuit of the digital input signal N recovers, that
is, the signal N settles down to “off”, the analogue input signal (recognised as
F) becomes valid by a fault measure. This indicates that the detected lever position
changes from N to F without manipulation by the operator, which violates the safety
requirement R2 in Sect. 2.2.

However, the above case could never happen in reality because it is caused by noth-
ing but a coincidence of several rare accidents. Nevertheless, it seems to be one of
the advantages of formal modelling that the above phenomenon which could hardly be
predicted in a manual fashion has been discovered.

5 Conclusion

In this paper, we have reported on a case study of applying a formal modelling technique
to safety analysis of an embedded control system for construction equipment, and we
have also presented a fault framework, which makes it possible to encapsulate a fault
detection mechanism into the Fault class and separate it from the other control logics.

The validation of the model revealed that, under particular conditions, the exempli-
fied system failed to satisfy certain safety requirement which had been considered to be
satisfied, though it could rarely happen in reality. This demonstrates the advantage of
the formal modelling and validation techniques.

The control system treated in this paper is only a part of the entire system. In future
work, we will apply the technique described above to a larger scale system. On the
other hand, in our test scenario based approach, the result considerably depends on the
quality of the scenarios. It might be sheer luck that we discovered the violation of the
safety requirements. We will challenge formal verification of the model with the help
of another verification tool, e.g. UPPAAL, in order to investigate if there exists another
case which violates the safety requirements.

Acknowledgements: The author would like to thank John Fitzgerald and Ken Pierce for
fruitful discussions. The work has been supported by Komatsu Ltd. Especially, the au-
thor is grateful to Shuuki Akushichi and Yasunori Ohkura for their valuable comments
on a draft.

98

References

1. Fitzgerald, J., Larsen, P.G.: Modelling Systems: Practical Tools and Techniques in Software
Development, Second Edition, Cambridge University Press (2009)

2. Fitzgerald, J., Larsen, P.G., Mukherjee, P., Plat, N., Verhoef, M.: Validated Designs for Object-
Oriented Systems, Springer, London (2005)

3. Larsen, P.G., Fitzgerald, J., Wolff, S.: Methods for the Development of Distributed Real-Time
Embedded Systems using VDM, Int J Software Informatics, vol. 3, no. 2-3, pp. 305–341
(2009)

4. Larsen, P.G., Wolff, S., Battle, N., Fitzgerald, J., Pierce, K.: Development Process of Dis-
tributed Embedded Systems using VDM, Overture Technical Report Series, no. TR-006
(2010)

5. McDermott, R.E., Mikulak, R.J., Beauregard, M.R.: The Basics of FMEA, Productivity Press
(1996)

6. Yokoyama, T., Naya, H., Narisawa, F., Kuragaki, S., Nagaura, W., Imai, T., Suzuki, S.: A
Development Method of Time-Triggered Object-Oriented Software for Embedded Control
Systems (in Japanese), IEICE Trans. D-I, vol. J84-D-I, no. 4, pp. 338–349 (2001)

A VDM++ Model for the Control System

A.1 The Common class

�
class Common

types
public Time = nat;

-- Digital input channel
public DinChannel = <CH_LEV_F> -- Direction lever F

| <CH_LEV_N> -- Direction lever N
| <CH_LEV_R>; -- Direction lever R

public Direction = <DIR_F> | <DIR_N> | <DIR_R>;

-- Analogue input state
public AinState = Direction

| <SUB_R> -- Lower than minimum
| <MID_RN> -- Middle between R & N
| <MID_FN> -- Middle between F & N
| <SUPER_F>; -- Higher than maximum

-- Physical position of the direction lever
public LeverPosition =

Direction
| <MID_RNR> -- Middle between R & N with Din R
| <MID_RN_> -- Middle between R & N without Din
| <MID_RNN> -- Middle between R & N with Din N
| <MID_FNN> -- Middle between F & N with Din N

99

| <MID_FN_> -- Middle between F & N without Din
| <MID_FNF>; -- Middle between F & N with Din F

public FaultMode = <DIN_OPEN_MINOR>
| <DIN_OPEN_SEVERE>
| <DIN_SHORT>
| <AIN_OPEN>
| <AIN_SHORT>
| <AIN_INTERNAL>;

functions
-- Count the number of ’true’ in a sequence of boolean values
public NumberOfTrue : seq of bool -> nat
NumberOfTrue(args) ==

len [args(i) | i in set inds args & args(i)];

end Common
� �
A.2 The Manager class

�
class Manager is subclass of Common

instance variables
-- Environment is declared as public
-- because it is referred to by test cases
public env : Environment;
private sysTime : Timer;
private timer : map FaultMode to Timer;
private din : map DinChannel to DigitalInput;
private ain : AnalogueInput;
private fault : map FaultMode to Fault;
private dirLevDin : DirectionLever;
private dirLevAin : DirectionLever;
private levPosDet : LeverPositionDetection;

values
-- Detecting or recovery time of faults
-- Declared as public because they are referred to by test cases
public DinOpMinorDetTime: Time = 8;
public DinOpMinorRecTime: Time = 0;
public DinOpSevereDetTime: Time = 15;
public DinOpSevereRecTime: Time = 5;
public DinShDetTime: Time = 3;
public AinFaultDetTime: Time = 5;
public AinFaultRecTime: Time = 5;

100

-- Time for safety requirements
public SafetyCheckTime: Time = (DinOpMinorDetTime +

AinFaultDetTime);

operations
public Manager : map Time to Environment‘SysState ==> Manager
Manager(mTrace) ==
(

-- Instantiate all objects
sysTime := new Timer();
timer := {fMode |-> new Timer() |

fMode in set {<DIN_OPEN_MINOR>, <DIN_OPEN_SEVERE>,
<DIN_SHORT>, <AIN_OPEN>,
<AIN_SHORT>, <AIN_INTERNAL>}};

env := new Environment(mTrace, sysTime);
din := {ch |-> new DigitalInput(ch, env) |

ch in set {<CH_LEV_F>, <CH_LEV_N>, <CH_LEV_R>}};
ain := new AnalogueInput(env);
let mapDin = {<DIR_F> |-> din(<CH_LEV_F>),

<DIR_N> |-> din(<CH_LEV_N>),
<DIR_R> |-> din(<CH_LEV_R>)}

in
(

fault := {<DIN_OPEN_MINOR> |->
new FaultDinOpenMinor(

DinOpMinorDetTime,
DinOpMinorRecTime,
timer(<DIN_OPEN_MINOR>),
mapDin),

<DIN_OPEN_SEVERE> |->
new FaultDinOpenSevere(

DinOpSevereDetTime,
DinOpSevereRecTime,
timer(<DIN_OPEN_SEVERE>),
mapDin, ain),

<DIN_SHORT> |->
new FaultDinShort(

DinShDetTime,
nil,
timer(<DIN_SHORT>),
mapDin),

<AIN_OPEN> |->
new FaultAinOpen(

AinFaultDetTime,
AinFaultRecTime,
timer(<AIN_OPEN>),
ain),

<AIN_SHORT> |->
new FaultAinShort(

AinFaultDetTime,

101

AinFaultRecTime,
timer(<AIN_SHORT>),
ain),

<AIN_INTERNAL> |->
new FaultAinInternal(

AinFaultDetTime,
nil,
timer(<AIN_INTERNAL>),
mapDin, ain)};

-- Add association from <AIN_INTERNAL> to <DIN_SHORT>
fault(<AIN_INTERNAL>).addFault(

{<DIN_SHORT> |-> fault(<DIN_SHORT>)});

dirLevDin := new DirectionLeverDigital(
{fMode |-> fault(fMode) |
fMode in set {<DIN_OPEN_MINOR>,

<DIN_OPEN_SEVERE>,
<DIN_SHORT>}},

mapDin)
);
dirLevAin := new DirectionLeverAnalogue(

{fMode |-> fault(fMode) |
fMode in set {<AIN_OPEN>,

<AIN_SHORT>,
<AIN_INTERNAL>}},

ain);
levPosDet := new LeverPositionDetection(

dirLevDin, dirLevAin, env);
);

public update : () ==> ()
update() ==
(

for all x in set dom din do din(x).update();
ain.update();
for all x in set dom fault do fault(x).update();
dirLevDin.update();
dirLevAin.update();
levPosDet.update();
sysTime.update();
for all x in set dom timer do timer(x).update();

);

end Manager
� �

102

A.3 The Timer class

�
class Timer is subclass of Common

instance variables
private timer : Time := 0;

operations
public Timer : () ==> Timer
Timer() ==

skip;

public update : () ==> ()
update() ==

timer := timer + 1;

public resetTimer : () ==> ()
resetTimer() ==

timer := 0;

public getTime : () ==> Time
getTime() ==

return timer;

end Timer
� �
A.4 The Environment class

�
class Environment is subclass of Common

types
public SysState :: dinF : bool -- Digital input F

dinN : bool -- Digital input N
dinR : bool -- Digital input R
ain : AinState -- Analogue input
levPos : LeverPosition
-- Physical lever position
detectLevPos : [Direction];
-- Detected lever position

instance variables
-- Time series of input/output data
private trace : map Time to SysState := {|->};
private sysTime : Timer;

103

operations
public Environment : map Time to SysState * Timer

==> Environment
Environment(inData, pTimer) ==
(

trace := inData;
sysTime := pTimer

);

public getDinValue : DinChannel ==> bool
getDinValue(ch) ==
(

let currentTime = sysTime.getTime()
in

cases ch:
<CH_LEV_F> -> return trace(currentTime).dinF,
<CH_LEV_N> -> return trace(currentTime).dinN,
<CH_LEV_R> -> return trace(currentTime).dinR

end
)
pre

sysTime.getTime() in set dom trace;

public getAinValue : () ==> AinState
getAinValue() ==

return trace(sysTime.getTime()).ain
pre

sysTime.getTime() in set dom trace;

public setDetectLevPosition : Direction ==> ()
setDetectLevPosition(dir) ==

trace(sysTime.getTime()).detectLevPos := dir
pre

sysTime.getTime() in set dom trace
post

-- Safety requirements
IfLeverIsFThenNotR() and
IfLeverIsRThenNotF() and
IfLeverIsNThenN() and
NotMoveWithoutOperation();

public getTrace : () ==> map Time to SysState
getTrace() ==

return trace;

-- Safety requirements
private IfLeverIsFThenNotR: () ==> bool
IfLeverIsFThenNotR() ==

let curTime = sysTime.getTime()
in

104

return
(((curTime >= Manager‘SafetyCheckTime) and
(forall t in set

{curTime - Manager‘SafetyCheckTime,..., curTime} &
trace(t).levPos = <DIR_F>))

=> trace(curTime).detectLevPos <> <DIR_R>)
post RESULT;

private IfLeverIsRThenNotF: () ==> bool
IfLeverIsRThenNotF() ==

let curTime = sysTime.getTime()
in

return
(((curTime >= Manager‘SafetyCheckTime) and
(forall t in set

{curTime - Manager‘SafetyCheckTime,..., curTime} &
trace(t).levPos = <DIR_R>))

=> trace(curTime).detectLevPos <> <DIR_F>)
post RESULT;

private IfLeverIsNThenN: () ==> bool
IfLeverIsNThenN() ==

let curTime = sysTime.getTime()
in

return
(((curTime >= Manager‘SafetyCheckTime) and
(forall t in set

{curTime - Manager‘SafetyCheckTime,..., curTime} &
trace(t).levPos = <DIR_N>))

=> trace(curTime).detectLevPos = <DIR_N>)
post RESULT;

private NotMoveWithoutOperation: () ==> bool
NotMoveWithoutOperation() ==

let curTime = sysTime.getTime()
in

return
(((curTime >= Manager‘SafetyCheckTime) and
(forall t in set

{curTime - Manager‘SafetyCheckTime,..., curTime-1} &
(trace(t).levPos = trace(curTime).levPos and
trace(t).detectLevPos = <DIR_N>)))

=> trace(curTime).detectLevPos = <DIR_N>)
post RESULT;

end Environment
� �

105

A.5 The DigitalInput class

�
class DigitalInput is subclass of Common

instance variables
private channel : DinChannel;
private value : bool := false;
private env : Environment;

operations
public DigitalInput : DinChannel * Environment ==> DigitalInput
DigitalInput(ch, pEnv) ==
(

channel := ch;
env := pEnv

);

public update : () ==> ()
update() ==

value := env.getDinValue(channel);

public getValue : () ==> bool
getValue() ==

return value;

end DigitalInput
� �
A.6 The AnalogueInput class

�
class AnalogueInput is subclass of Common

instance variables
private value : AinState := <SUB_R>;
private env : Environment;

operations
public AnalogueInput : Environment ==> AnalogueInput
AnalogueInput(pEnv) ==

env := pEnv;

public update : () ==> ()
update() ==

value := env.getAinValue();

public getValue : () ==> AinState

106

getValue() ==
return value;

end AnalogueInput
� �
A.7 The Fault class

�
class Fault is subclass of Common

types
public FaultState = <FLT_NORMAL>

| <FLT_DETECTING>
| <FLT_CONFIRMED>
| <FLT_RECOVERING>;

instance variables
private state : FaultState := <FLT_NORMAL>;
private detectingTime : [Time];

-- nil means the fault is undetectable
private recoveryTime : [Time];

-- nil means the fault is unrecoverable
private timer : Timer;
protected fault : map FaultMode to Fault := {|->};

operations
public Fault : [Time] * [Time] * Timer ==> Fault
Fault(detT, recT, pTimer) ==
(

detectingTime := detT;
recoveryTime := recT;
timer := pTimer

);

-- Add association to another Fault to watch
public addFault : map FaultMode to Fault ==> ()
addFault(mFault) ==

fault := fault ++ mFault;

public update : () ==> ()
update() ==

cases state:
<FLT_NORMAL> -> doFaultNormal(),
<FLT_DETECTING> -> doFaultDetecting(),
<FLT_CONFIRMED> -> doFaultConfirmed(),
<FLT_RECOVERING> -> doFaultRecovering()

end;

107

private doFaultNormal : () ==> ()
doFaultNormal() ==
(

if errorState() and detectingTime <> nil
then
(

timer.resetTimer();
if detectingTime = 0
then

state := <FLT_CONFIRMED>
else

state := <FLT_DETECTING>
)
else

skip
)
pre

state = <FLT_NORMAL>;

private doFaultDetecting : () ==> ()
doFaultDetecting() ==
(

if not errorState()
then

state := <FLT_NORMAL>
else if timer.getTime() >= detectingTime
then

state := <FLT_CONFIRMED>
else

skip
)
pre

state = <FLT_DETECTING>;

private doFaultConfirmed : () ==> ()
doFaultConfirmed() ==
(

if recoveryState() and recoveryTime <> nil
then
(

timer.resetTimer();
if recoveryTime = 0
then

state := <FLT_NORMAL>
else

state := <FLT_RECOVERING>
)
else

skip

108

)
pre

state = <FLT_CONFIRMED>;

private doFaultRecovering : () ==> ()
doFaultRecovering() ==
(

if not recoveryState()
then

state := <FLT_CONFIRMED>
else if timer.getTime() >= recoveryTime
then

state := <FLT_NORMAL>
else

skip
)
pre

state = <FLT_RECOVERING>;

private errorState : () ==> bool
errorState() == is subclass responsibility;

private recoveryState : () ==> bool
recoveryState() == is subclass responsibility;

public getFaultState : () ==> FaultState
getFaultState() ==

return state;

public isFaultConfirmed : () ==> bool
isFaultConfirmed() ==

return ((state = <FLT_CONFIRMED>) or
(state = <FLT_RECOVERING>));

end Fault
� �
A.8 The FaultDinOpenMinor class

�
class FaultDinOpenMinor is subclass of Fault

instance variables
private din : map Direction to DigitalInput;

operations
public FaultDinOpenMinor : [Time] * [Time] * Timer *

map Direction to DigitalInput

109

==> FaultDinOpenMinor
FaultDinOpenMinor(detT, recT, pTimer, mDin) ==
(

din := mDin;
Fault(detT, recT, pTimer)

)
pre

dom mDin = {<DIR_F>, <DIR_N>, <DIR_R>};

private errorState : () ==> bool
errorState() ==

return NumberOfTrue([din(<DIR_F>).getValue(),
din(<DIR_N>).getValue(),
din(<DIR_R>).getValue()]) = 0;

private recoveryState : () ==> bool
recoveryState() ==

return NumberOfTrue([din(<DIR_F>).getValue(),
din(<DIR_N>).getValue(),
din(<DIR_R>).getValue()]) = 1;

end FaultDinOpenMinor
� �
A.9 The FaultDinOpenSevere class

�
class FaultDinOpenSevere is subclass of Fault

instance variables

private din : map Direction to DigitalInput;
private ain : AnalogueInput;

operations

public FaultDinOpenSevere : [Time] * [Time] * Timer *
map Direction to DigitalInput *
AnalogueInput
==> FaultDinOpenSevere

FaultDinOpenSevere(detT, recT, pTimer, mDin, pAin) ==
(

din := mDin;
ain := pAin;
Fault(detT, recT, pTimer)

)
pre

dom mDin = {<DIR_F>, <DIR_N>, <DIR_R>};

110

private errorState : () ==> bool
errorState() ==

let ainValue = ain.getValue()
in
(

return (NumberOfTrue([din(<DIR_F>).getValue(),
din(<DIR_N>).getValue(),
din(<DIR_R>).getValue()]) = 0

and
(ainValue = <DIR_F> or
ainValue = <DIR_N> or
ainValue = <DIR_R>))

);

private recoveryState : () ==> bool
recoveryState() ==

return NumberOfTrue([din(<DIR_F>).getValue(),
din(<DIR_N>).getValue(),
din(<DIR_R>).getValue()]) = 1;

end FaultDinOpenSevere
� �
A.10 The FaultDinShort class

�
class FaultDinShort is subclass of Fault

instance variables
private din : map Direction to DigitalInput;

operations
public FaultDinShort : [Time] * [Time] * Timer *

map Direction to DigitalInput
==> FaultDinShort

FaultDinShort(detT, recT, pTimer, mDin) ==
(

din := mDin;
Fault(detT, recT, pTimer)

)
pre

dom mDin = {<DIR_F>, <DIR_N>, <DIR_R>};

private errorState : () ==> bool
errorState() ==

return NumberOfTrue([din(<DIR_F>).getValue(),
din(<DIR_N>).getValue(),

111

din(<DIR_R>).getValue()]) > 1;

private recoveryState : () ==> bool
recoveryState() ==

return false;

end FaultDinShort
� �
A.11 The FaultAinOpen class

�
class FaultAinOpen is subclass of Fault

instance variables
private ain : AnalogueInput;

operations
public FaultAinOpen : [Time] * [Time] * Timer * AnalogueInput

==> FaultAinOpen
FaultAinOpen(detT, recT, pTimer, pAin) ==
(

ain := pAin;
Fault(detT, recT, pTimer)

);

private errorState : () ==> bool
errorState() ==

return ain.getValue() = <SUB_R>;

private recoveryState : () ==> bool
recoveryState() ==

return ain.getValue() <> <SUB_R>;

end FaultAinOpen
� �
A.12 The FaultAinShort class

�
class FaultAinShort is subclass of Fault

instance variables
private ain : AnalogueInput;

operations
public FaultAinShort : [Time] * [Time] * Timer * AnalogueInput

112

==> FaultAinShort
FaultAinShort(detT, recT, pTimer, pAin) ==
(

ain := pAin;
Fault(detT, recT, pTimer)

);

private errorState : () ==> bool
errorState() ==

return ain.getValue() = <SUPER_F>;

private recoveryState : () ==> bool
recoveryState() ==

return ain.getValue() <> <SUPER_F>;

end FaultAinShort
� �
A.13 The FaultAinInternal class

�
class FaultAinInternal is subclass of Fault

instance variables
private din : map Direction to DigitalInput;
private ain : AnalogueInput;

operations
public FaultAinInternal : [Time] * [Time] * Timer *

map Direction to DigitalInput *
AnalogueInput
==> FaultAinInternal

FaultAinInternal(detT, recT, pTimer, mDin, pAin) ==
(

din := mDin;
ain := pAin;
Fault(detT, recT, pTimer)

)
pre

dom mDin = {<DIR_F>, <DIR_N>, <DIR_R>};

private errorState : () ==> bool
errorState() ==

let dinValueF = din(<DIR_F>).getValue(),
dinValueN = din(<DIR_N>).getValue(),
dinValueR = din(<DIR_R>).getValue(),
ainValue = ain.getValue()

in

113

(
return ((dinValueF and not dinValueN and

not dinValueR and
(ainValue = <DIR_R> or ainValue = <MID_RN>))

or
(not dinValueF and not dinValueN and
dinValueR and
(ainValue = <DIR_F> or ainValue = <MID_FN>))

or
(not dinValueF and dinValueN and
not dinValueR and
(ainValue = <DIR_F> or ainValue = <DIR_R>)))

and not fault(<DIN_SHORT>).isFaultConfirmed()
)

pre
<DIN_SHORT> in set dom fault;

private recoveryState : () ==> bool
recoveryState() ==

return false;

end FaultAinInternal
� �
A.14 The DirectionLever class

�
class DirectionLever is subclass of Common

instance variables
protected position : Direction := <DIR_N>;
protected fault : map FaultMode to Fault;

operations
public DirectionLever : map FaultMode to Fault

==> DirectionLever
DirectionLever(mFault) ==

fault := mFault;

public update : () ==> ()
update() == is subclass responsibility;

public getPosition : () ==> [Direction]
getPosition() == is subclass responsibility;

end DirectionLever
� �
114

A.15 The DirectionLeverDigital class

�
class DirectionLeverDigital is subclass of DirectionLever

instance variables
private din : map Direction to DigitalInput;

operations
public DirectionLeverDigital : map FaultMode to Fault *

map Direction to DigitalInput
==> DirectionLeverDigital

DirectionLeverDigital(mFault, mDin) ==
(

din := mDin;
DirectionLever(mFault)

)
pre

dom mFault = {<DIN_OPEN_MINOR>, <DIN_OPEN_SEVERE>,
<DIN_SHORT>} and

dom mDin = {<DIR_F>, <DIR_N>, <DIR_R>};

public update : () ==> ()
update() ==
(

-- Detect the lever position by the digital input.
-- In case the input has a fault,
-- the position is not updated.
if fault(<DIN_OPEN_MINOR>).getFaultState() = <FLT_NORMAL>

and
fault(<DIN_OPEN_SEVERE>).getFaultState() = <FLT_NORMAL>
and
fault(<DIN_SHORT>).getFaultState() = <FLT_NORMAL>

then
(

let dinValueF = din(<DIR_F>).getValue(),
dinValueN = din(<DIR_N>).getValue(),
dinValueR = din(<DIR_R>).getValue()

in
(

if dinValueF and
not dinValueN and
not dinValueR

then
position := <DIR_F>

else if not dinValueF and
dinValueN and
not dinValueR

then
position := <DIR_N>

115

else if not dinValueF and
not dinValueN and
dinValueR

then
position := <DIR_R>

else
skip

)
)
else

skip;
);

-- Return nil if at least one digital input fault is confirmed,
-- otherwise return detected lever position
public getPosition : () ==> [Direction]
getPosition() ==

if fault(<DIN_OPEN_MINOR>).isFaultConfirmed() or
fault(<DIN_OPEN_SEVERE>).isFaultConfirmed() or
fault(<DIN_SHORT>).isFaultConfirmed()

then
return nil

else
return position;

end DirectionLeverDigital
� �
A.16 The DirectionLeverAnalogue class

�
class DirectionLeverAnalogue is subclass of DirectionLever

instance variables
private isValid : bool := true;
private ain : AnalogueInput;

operations
public DirectionLeverAnalogue : map FaultMode to Fault *

AnalogueInput
==> DirectionLeverAnalogue

DirectionLeverAnalogue(mFault, pAin) ==
(

ain := pAin;
DirectionLever(mFault)

)
pre

dom mFault = {<AIN_OPEN>, <AIN_SHORT>, <AIN_INTERNAL>};

116

public update : () ==> ()
update() ==
(

let ainValue = ain.getValue()
in
(

-- Check if the analogue input is valid or not.
-- If an analogue input fault is confirmed,
-- then set to invalid.
-- If the normal N position is detected after
-- fault recovery, then set to valid.
if fault(<AIN_OPEN>).isFaultConfirmed() or

fault(<AIN_SHORT>).isFaultConfirmed() or
fault(<AIN_INTERNAL>).isFaultConfirmed()

then
isValid := false

else if ainValue = <DIR_N>
then

isValid := true
else

skip;

-- Detect the lever position by the analogue input
-- including fault measures
if fault(<AIN_OPEN>).getFaultState() = <FLT_NORMAL>

and
fault(<AIN_SHORT>).getFaultState() = <FLT_NORMAL>
and
fault(<AIN_INTERNAL>).getFaultState() = <FLT_NORMAL>
and isValid

then
(

if ainValue = <DIR_F> or ainValue = <DIR_R>
then

position := ainValue
else

position := <DIR_N>
)
else

position := <DIR_N>
)

);

public getPosition : () ==> [Direction]
getPosition() ==

return position;

end DirectionLeverAnalogue
� �
117

A.17 The LeverPositionDetection class

�
class LeverPositionDetection is subclass of Common

instance variables
private detectLevPos : [Direction] := nil;
private dinHasPriority : bool := true;
private din : DirectionLever;
private ain : DirectionLever;
private env : Environment;

operations
public LeverPositionDetection : DirectionLever *

DirectionLever *
Environment
==> LeverPositionDetection

LeverPositionDetection(pDin, pAin, pEnv) ==
(

din := pDin;
ain := pAin;
env := pEnv

);

public update : () ==> ()
update() ==
(

let dinPosition = din.getPosition(),
ainPosition = ain.getPosition()

in
(

-- Check which input has priority.
-- If a digital input fault is confirmed,
-- then analogue is valid.
-- After fault recovery, if the lever positions by
-- digital and analogue are consistent,
-- then digital is valid.
if dinPosition = nil
then

dinHasPriority := false
else if dinPosition = ainPosition
then

dinHasPriority := true
else

skip;

-- Get the lever position from the prior input
if dinHasPriority
then

detectLevPos := dinPosition

118

else
detectLevPos := ainPosition

);

-- Set the detected lever position to Environment
env.setDetectLevPosition(detectLevPos)

);

end LeverPositionDetection
� �

119

Requests for Modification of periodic thread definitions
and duration and cycles statements

Ken Pierce1 and Kenneth Lausdahl2

1 School of Computing Science, Newcastle University,
Newcastle upon Tyne, NE1 7RU, United Kingdom

K.G.Pierce@ncl.ac.uk
2 Aarhus School of Engineering, Dalgas Avenue 2

DK-8000 Aarhus C, Denmark
kel@iha.dk

1 Overview

This note describes two RMs (Requests for Modification to the Language Board) re-
lating to VDM-RT that were submitted by Ken Pierce and Kenneth Lausdahl in March
2011. Both RMs are related. They originated while the authors were building real-time
controller models for the DESTECS3 project. The issue is that two key timing-related
constructs in VDM-RT (periodic thread definitions and duration / cycles statements)
only permit numeric literals to be used to define timing behaviour. This means that
“magic numbers” must be hard coded into specifications. We suggest that this is overly
restrictive and represents poor coding practice forced by the language, meaning that
specifications are harder to read and maintain.

The proposals therefore suggest that these constructs should allow a wider range of
expressions to be used instead, in order to increase flexibility and usability. We suggest
that at the very least values (i.e. constants) should be permitted in addition to numeric
literals. This is only a small change to the syntax and has no effect on the semantics.
As a further step, these constructs could allow references to instance variables, which
would allow more object-level flexibility. For example, this would allow instances of the
same class to have different periodic thread behaviour. This would introduce semantic
questions however, such as when references are read and if they can be modified during
execution.

Clearly, depending on the choices made, the semantics may or may not be affected
by the proposed changes. The authors therefore suggest that this choice be discussed
with the community, however we are keen to see (at least) values and instance variables
permitted in periodic thread definitions.

In the remainder of this note, Section 2 attempts to motivate the need for changes
with a view from the DESTECS project, followed by more details of the RMs in Sec-
tion 3 and 4.

3 http://www.destecs.org/

2 Motivation for requests

Our main reason for requesting these changes comes from our attempts (within the
DESTECS project) to build real-time controller models for use in co-simulation with
continuous-time plant (or environment) models.

Parts of the controllers that we wish to model in DESTECS —such as low-level PID
controllers— need to know the sample time (i.e. the thread period) in order to calculate
the control output. In a model where other time-related calculations are required (such
as calculation of discrete integrals), this information needs to be available in multiple
places. Typically, one would follow good programming practice and define a constant
(value) in order to ensure that the value used is correct in all places.

The necessity to hard code the thread period as a numeric literal permits the pos-
sibility that the actual thread period and the value that the controller uses to calculate
control actions can differ. This typically results in (often wildly) incorrect simulation
results. This situation can arise if the modeller changes one of the values and forgets to
change the other. This is particularly easy if the model is being altered by someone new
who didn’t originally write it. Therefore we believe that allowing constants to be used
in periodic thread definitions is entirely justified.

In the DESTECS project, we are also interested in design space exploration (DSE)
using co-simulation. This is where a set of candidate designs are evaluated by compar-
ing the results of co-simulation. The best design is chosen according to some parame-
ters, for example, the design that meets the requirements at the cheapest projected cost
of components.

To increase the ability to evaluate designs, we wish to introduce automation where
possible. Essentially, we would like the ability to alter certain parameters of controller
models, run simulations to gather results, then compare them. This is somewhat similar
to the combinatorial testing offered by the Overture tool already.

Parameters should include the number of controllers, their loop period and their de-
ployment architecture. In one case study (the ChessWay personal transporter [FLP+10])
for example, a small safety monitor runs on it’s own CPU at a speed much higher than
the main controller, in order to ensure the safety of the rider. We might wish to run mul-
tiple simulations with differing main controller and safety controller speeds, in order to
find the most effective combination.

The hard-coded nature of periodic threads and duration/cycle statements makes this
difficult, in addition to the class-level nature of periodic threads. Currently, the user must
edit the model in between each simulation run (ensuring that they update the relevant
values in all places in which they appear). This is far from convenient and can lead
to errors. Permitting instance variables to be referenced by periodic thread definitions
would allow threading behaviour to be specified through object constructors. This fits
with the object-oriented nature of VDM-RT and more easily permits automation.

Object-level periodic threads would also help in another aim of the DESTECS
project, which is to provide libraries of common components for building real-time
controllers in VDM (to help users unfamiliar with VDM to begin building working ex-
amples quickly). We would like to do this by providing classes that can be instantiated
as objects by users. It would be preferable to allow periodic behaviour to be config-

121

urable via a constructor, rather than requiring new users to begin using concepts such
as inheritance straight away.

3 Expressions in periodic thread definitions (ID: 3220182)

The DESTECS project [BLV+10] focuses on co-simulation of discrete-event controllers
written in VDM-RT with continuous-time models described in 20-sim [Bro97,Kle06].
The controller models that we wish to produce are typically real-time controllers that
must perform an action at a regular interval. For example, reading sensors and produc-
ing control actions at a frequency of 1000Hz (or a period of 1 millisecond).

The best way to achieve this in VDM-RT is with a periodic thread definition:�
thread
periodic(period,delay,jitter,offset)
� �

The values of period, delay, jitter and offset can only be hard coded as
numeric literals. Therefore to run a controller thread at 1000Hz (one thousand times per
second, or 1 millisecond per cycle), the following definition could be used:�
thread
periodic(1,0,0,0)
� �
3.1 Extension 1: Using values (and simple calculations)

The following definition currently couldn’t be used, however it is perhaps a more in-
tuitive way to define the behaviour and better coding practice. Here a constant called
FREQUENCY is used to set the frequency (in Hz), with the conversion to period (in
milliseconds) handled in the periodic definition:�
values
FREQUENCY: nat1 = 1000

thread
periodic(1000/FREQUENCY, 0, 0, 0)
� �

3.2 Extension 2: Using instance variables

Note that threads also are class-level (as opposed to object-level). This means that each
object instance of a periodic class must have the same periodic behaviour. In order
to model two copies of a controller running at the same time but at different speeds
(or perhaps more likely different jitter or delay), it is necessary to define a controller
class without a thread and then create two subclasses that only describe the periodic
behaviour, for example:

122

�
-- this object will run normally
class MyControllerA is subclass of MyController

thread
periodic(1, 0, 0, 0)

end MyControllerA

-- this object is more jittery
class MyControllerB is subclass of MyController

thread
periodic(1, 10, 0, 0)

end MyControllerB
� �
By permitting instance variable expressions to appear in periodic definitions, peri-

odic behaviour can become object-level and permit instances of the same class do have
different thread behaviour. Consider this example:�
class MyController

instance variables
private frequency: nat1 := 1000

thread
periodic(1000/frequency, 0, 0, 0)

end MyController
� �
Here, the value of frequency can be set in the constructor. This makes practices such

as automated testing possible, including automated exploration of alternative designs
and deployments which is one of the aims of the DESTECS approach. This modification
would also permit objects instantiated from libraries of classes to have their periodic
behaviour configured through a constructor:�
class LibController

instance variables
-- default frequency
private frequency: nat1 := 1000

operations
public LibController: nat1 ==> LibController

123

LibController(freq) ==
-- user-configurable frequency
frequency := freq

thread
periodic(1000/frequency, 0, 0, 0)

end LibController
� �
A clear issue is when the value of frequency is evaluated and whether or not it can

be changed. In order to ensure that a periodic thread’s behaviour is unchanging over
the course of an execution (i.e. by not allowing frequency to be assigned during run-
time), we suggest that something like a final keyword (or equivalent) is introduced.
In the Java language [GJSB05], a final variable can be assigned to at most once during
construction of an object and must be assigned to during object construction. If this
concept were adopted into VDM-RT, then periodic definitions could be restricted only
to permit instance variables that are declared final:�
instance variables
private final frequency;
� �

4 Values in duration / cycles statements (ID: 3220223)

The issue with duration and cycles is very similar to that of periodic threads described
above. These two statements delay the internal clock of VDM-RT to simulate actions
taking time. This delay can be based on the speed of the (simulated) CPU, using cycles,
or based on (simulated) time, using duration. The following assignment statements
would therefore take 10 (simulated) clock cycles to complete:�
cycles(10) (x := 1; y := 2; z := true)
� �

Or the statement could be modified to take 2 (simulated) milliseconds, regardless of
the (simulated) CPU speed:�
duration(2) (x := 1; y := 2; z := true)
� �

As with periodic threads however, only numeric literals are permitted for describing
the number of cycles or duration. Therefore the following is not valid:�
values
CYCLES: nat = 7

124

operations
public op1: () ==> ()
op1() ==
cycles(CYCLES) (

x := 1; y := 2; z := true
)
� �

So again magic numbers must be hard coded into specifications and durations / cy-
cles statements cannot be altered through object-construction (they are static by class).
We therefore request that expressions of time in duration and cycles statements not be
restricted to numeric literals. Again there is a question of how flexible we want the lan-
guage to be (values, instance variables, or functions, etc.) and when and how often the
expressions should be evaluated (i.e. once during object construction or every time the
statement is executed). We therefore suggest that the community should discuss these
issues together and modify the RMs accordingly.

Note there are also related RMs to the two described here, namely 3220437: Ex-
tend duration and cycles (allow intervals + probabilities) and 3220324: Sporadic thread
definitions.

Acknowledgements

The authors’ work is supported by the EU FP7 project DESTECS.

References

[BLV+10] J. F. Broenink, P. G. Larsen, M. Verhoef, C. Kleijn, D. Jovanovic, K. Pierce, and
Wouters F. Design support and tooling for dependable embedded control software.
In Proceedings of Serene 2010 International Workshop on Software Engineering for
Resilient Systems. ACM, April 2010.

[Bro97] Jan F. Broenink. Modelling, Simulation and Analysis with 20-Sim. Journal A Special
Issue CACSD, 38(3):22–25, 1997.

[FLP+10] John Fitzgerald, Peter Gorm Larsen, Ken Pierce, Marcel Verhoef, and Sune Wolff.
Collaborative Modelling and Co-simulation in the Development of Dependable Em-
bedded Systems. In D. Méry and S. Merz, editors, IFM 2010, Integrated Formal
Methods, volume 6396 of Lecture Notes in Computer Science, pages 12–26. Springer-
Verlag, October 2010.

[GJSB05] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. The Java Language Specifi-
cation, Third Edition. Addison-Wesley Longman, Amsterdam, 3 edition, June 2005.

[Kle06] Christian Kleijn. Modelling and Simulation of Fluid Power Systems with 20-sim.
International Journal of Fluid Power, 7(3), November 2006.

125

Department of Engineering
Aarhus University
Edison, Finlandsgade 22

8200 Aarhus N
Denmark

Tel.: +45 4189 3000

Sune Wolff & John Fitzgerald:
Proceedings of The 9th Overture Workshop, 2012

